Defining parameters
Level: | \( N \) | \(=\) | \( 3872 = 2^{5} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3872.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 88 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(1056\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3872, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 576 | 116 | 460 |
Cusp forms | 480 | 100 | 380 |
Eisenstein series | 96 | 16 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3872, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
3872.2.g.a | $8$ | $30.918$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(-8\) | \(0\) | \(0\) | \(q+(-\beta_{4}-1)q^{3}+(\beta_{2}+2\beta_1)q^{5}+\cdots\) |
3872.2.g.b | $8$ | $30.918$ | 8.0.64000000.1 | \(\Q(\sqrt{-2}) \) | \(0\) | \(4\) | \(0\) | \(0\) | \(q-\beta _{2}q^{3}+(4+\beta _{6})q^{9}+(\beta _{1}+\beta _{3}-\beta _{5}+\cdots)q^{17}+\cdots\) |
3872.2.g.c | $20$ | $30.918$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{4}q^{3}-\beta _{6}q^{5}+\beta _{9}q^{7}+(1-\beta _{4}+\cdots)q^{9}+\cdots\) |
3872.2.g.d | $32$ | $30.918$ | None | \(0\) | \(-8\) | \(0\) | \(0\) | ||
3872.2.g.e | $32$ | $30.918$ | None | \(0\) | \(8\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(3872, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3872, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 3}\)