Properties

Label 3872.2.g
Level 38723872
Weight 22
Character orbit 3872.g
Rep. character χ3872(1935,)\chi_{3872}(1935,\cdot)
Character field Q\Q
Dimension 100100
Newform subspaces 55
Sturm bound 10561056
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3872=25112 3872 = 2^{5} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3872.g (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 88 88
Character field: Q\Q
Newform subspaces: 5 5
Sturm bound: 10561056
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(3872,[χ])M_{2}(3872, [\chi]).

Total New Old
Modular forms 576 116 460
Cusp forms 480 100 380
Eisenstein series 96 16 80

Trace form

100q4q3+88q964q2516q27+56q4936q59+56q67+96q75+60q8116q89+48q9112q97+O(q100) 100 q - 4 q^{3} + 88 q^{9} - 64 q^{25} - 16 q^{27} + 56 q^{49} - 36 q^{59} + 56 q^{67} + 96 q^{75} + 60 q^{81} - 16 q^{89} + 48 q^{91} - 12 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3872,[χ])S_{2}^{\mathrm{new}}(3872, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
3872.2.g.a 3872.g 88.g 88 30.91830.918 Q(ζ24)\Q(\zeta_{24}) None 968.2.g.b 00 8-8 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β41)q3+(β2+2β1)q5+q+(-\beta_{4}-1)q^{3}+(\beta_{2}+2\beta_1)q^{5}+\cdots
3872.2.g.b 3872.g 88.g 88 30.91830.918 8.0.64000000.1 Q(2)\Q(\sqrt{-2}) 88.2.k.a 00 44 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] qβ2q3+(4+β6)q9+(β1+β3β5+)q17+q-\beta _{2}q^{3}+(4+\beta _{6})q^{9}+(\beta _{1}+\beta _{3}-\beta _{5}+\cdots)q^{17}+\cdots
3872.2.g.c 3872.g 88.g 2020 30.91830.918 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 968.2.g.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β4q3β6q5+β9q7+(1β4+)q9+q+\beta _{4}q^{3}-\beta _{6}q^{5}+\beta _{9}q^{7}+(1-\beta _{4}+\cdots)q^{9}+\cdots
3872.2.g.d 3872.g 88.g 3232 30.91830.918 None 88.2.k.b 00 8-8 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]
3872.2.g.e 3872.g 88.g 3232 30.91830.918 None 968.2.g.d 00 88 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S2old(3872,[χ])S_{2}^{\mathrm{old}}(3872, [\chi]) into lower level spaces

S2old(3872,[χ]) S_{2}^{\mathrm{old}}(3872, [\chi]) \simeq S2new(88,[χ])S_{2}^{\mathrm{new}}(88, [\chi])6^{\oplus 6}\oplusS2new(352,[χ])S_{2}^{\mathrm{new}}(352, [\chi])2^{\oplus 2}\oplusS2new(968,[χ])S_{2}^{\mathrm{new}}(968, [\chi])3^{\oplus 3}