Properties

Label 3872.2.g
Level $3872$
Weight $2$
Character orbit 3872.g
Rep. character $\chi_{3872}(1935,\cdot)$
Character field $\Q$
Dimension $100$
Newform subspaces $5$
Sturm bound $1056$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 88 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(1056\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3872, [\chi])\).

Total New Old
Modular forms 576 116 460
Cusp forms 480 100 380
Eisenstein series 96 16 80

Trace form

\( 100 q - 4 q^{3} + 88 q^{9} - 64 q^{25} - 16 q^{27} + 56 q^{49} - 36 q^{59} + 56 q^{67} + 96 q^{75} + 60 q^{81} - 16 q^{89} + 48 q^{91} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3872, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3872.2.g.a 3872.g 88.g $8$ $30.918$ \(\Q(\zeta_{24})\) None 968.2.g.b \(0\) \(-8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{4}-1)q^{3}+(\beta_{2}+2\beta_1)q^{5}+\cdots\)
3872.2.g.b 3872.g 88.g $8$ $30.918$ 8.0.64000000.1 \(\Q(\sqrt{-2}) \) 88.2.k.a \(0\) \(4\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{2}q^{3}+(4+\beta _{6})q^{9}+(\beta _{1}+\beta _{3}-\beta _{5}+\cdots)q^{17}+\cdots\)
3872.2.g.c 3872.g 88.g $20$ $30.918$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 968.2.g.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{3}-\beta _{6}q^{5}+\beta _{9}q^{7}+(1-\beta _{4}+\cdots)q^{9}+\cdots\)
3872.2.g.d 3872.g 88.g $32$ $30.918$ None 88.2.k.b \(0\) \(-8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
3872.2.g.e 3872.g 88.g $32$ $30.918$ None 968.2.g.d \(0\) \(8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(3872, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3872, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 3}\)