Properties

Label 39.10.a
Level $39$
Weight $10$
Character orbit 39.a
Rep. character $\chi_{39}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $4$
Sturm bound $46$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 39.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(46\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(39))\).

Total New Old
Modular forms 44 18 26
Cusp forms 40 18 22
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(6\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(7\)
Minus space\(-\)\(11\)

Trace form

\( 18 q + 68 q^{2} + 4952 q^{4} + 1136 q^{5} - 8748 q^{6} - 7472 q^{7} + 69360 q^{8} + 118098 q^{9} + 1140 q^{10} - 146784 q^{11} + 57996 q^{12} - 57122 q^{13} - 422192 q^{14} - 163944 q^{15} + 1448116 q^{16}+ \cdots - 963049824 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(39))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 13
39.10.a.a 39.a 1.a $3$ $20.086$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 39.10.a.a \(-18\) \(243\) \(-888\) \(-14406\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-6+\beta _{1})q^{2}+3^{4}q^{3}+(328-6\beta _{1}+\cdots)q^{4}+\cdots\)
39.10.a.b 39.a 1.a $4$ $20.086$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 39.10.a.b \(36\) \(-324\) \(-1044\) \(5868\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(9+\beta _{1})q^{2}-3^{4}q^{3}+(118+23\beta _{1}+\cdots)q^{4}+\cdots\)
39.10.a.c 39.a 1.a $5$ $20.086$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 39.10.a.c \(52\) \(-405\) \(2624\) \(-4802\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(10+\beta _{1})q^{2}-3^{4}q^{3}+(326+8\beta _{1}+\cdots)q^{4}+\cdots\)
39.10.a.d 39.a 1.a $6$ $20.086$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 39.10.a.d \(-2\) \(486\) \(444\) \(5868\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+3^{4}q^{3}+(311-6\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(39))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(39)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)