Defining parameters
Level: | \( N \) | \(=\) | \( 39 = 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 39.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(46\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(39))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 18 | 26 |
Cusp forms | 40 | 18 | 22 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(6\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(7\) | |
Minus space | \(-\) | \(11\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(39))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 13 | |||||||
39.10.a.a | $3$ | $20.086$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-18\) | \(243\) | \(-888\) | \(-14406\) | $-$ | $-$ | \(q+(-6+\beta _{1})q^{2}+3^{4}q^{3}+(328-6\beta _{1}+\cdots)q^{4}+\cdots\) | |
39.10.a.b | $4$ | $20.086$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(36\) | \(-324\) | \(-1044\) | \(5868\) | $+$ | $+$ | \(q+(9+\beta _{1})q^{2}-3^{4}q^{3}+(118+23\beta _{1}+\cdots)q^{4}+\cdots\) | |
39.10.a.c | $5$ | $20.086$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(52\) | \(-405\) | \(2624\) | \(-4802\) | $+$ | $-$ | \(q+(10+\beta _{1})q^{2}-3^{4}q^{3}+(326+8\beta _{1}+\cdots)q^{4}+\cdots\) | |
39.10.a.d | $6$ | $20.086$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-2\) | \(486\) | \(444\) | \(5868\) | $-$ | $+$ | \(q-\beta _{1}q^{2}+3^{4}q^{3}+(311-6\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(39))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(39)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)