Properties

Label 39.3
Level 39
Weight 3
Dimension 72
Nonzero newspaces 6
Newform subspaces 11
Sturm bound 336
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 39 = 3 \cdot 13 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 11 \)
Sturm bound: \(336\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(39))\).

Total New Old
Modular forms 136 92 44
Cusp forms 88 72 16
Eisenstein series 48 20 28

Trace form

\( 72 q - 6 q^{3} - 12 q^{4} - 6 q^{6} - 32 q^{7} - 72 q^{8} - 12 q^{9} - 72 q^{10} - 12 q^{11} - 12 q^{12} + 12 q^{13} + 48 q^{14} + 30 q^{15} + 148 q^{16} + 12 q^{17} - 96 q^{18} - 44 q^{19} - 96 q^{20}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(39))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
39.3.c \(\chi_{39}(14, \cdot)\) 39.3.c.a 8 1
39.3.d \(\chi_{39}(38, \cdot)\) 39.3.d.a 2 1
39.3.d.b 2
39.3.d.c 4
39.3.g \(\chi_{39}(31, \cdot)\) 39.3.g.a 8 2
39.3.h \(\chi_{39}(17, \cdot)\) 39.3.h.a 2 2
39.3.h.b 12
39.3.i \(\chi_{39}(29, \cdot)\) 39.3.i.a 2 2
39.3.i.b 12
39.3.l \(\chi_{39}(7, \cdot)\) 39.3.l.a 8 4
39.3.l.b 12

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(39))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(39)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 1}\)