Properties

Label 39.4.b
Level $39$
Weight $4$
Character orbit 39.b
Rep. character $\chi_{39}(25,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $2$
Sturm bound $18$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 39.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(18\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(39, [\chi])\).

Total New Old
Modular forms 16 8 8
Cusp forms 12 8 4
Eisenstein series 4 0 4

Trace form

\( 8 q - 40 q^{4} + 72 q^{9} - 68 q^{10} + 36 q^{12} - 84 q^{13} - 264 q^{14} + 372 q^{16} + 312 q^{17} + 244 q^{22} - 168 q^{23} - 64 q^{25} - 432 q^{26} - 432 q^{29} - 324 q^{30} + 984 q^{35} - 360 q^{36}+ \cdots + 1512 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(39, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
39.4.b.a 39.b 13.b $4$ $2.301$ 4.0.5054412.1 None 39.4.b.a \(0\) \(-12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-3q^{3}+(-7+\beta _{3})q^{4}+\beta _{2}q^{5}+\cdots\)
39.4.b.b 39.b 13.b $4$ $2.301$ 4.0.1362828.1 None 39.4.b.b \(0\) \(12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+3q^{3}+(-4+\beta _{3})q^{4}+(2\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(39, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(39, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)