Defining parameters
Level: | \( N \) | \(=\) | \( 39 = 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 39.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(39, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 8 | 8 |
Cusp forms | 12 | 8 | 4 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(39, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
39.4.b.a | $4$ | $2.301$ | 4.0.5054412.1 | None | \(0\) | \(-12\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-3q^{3}+(-7+\beta _{3})q^{4}+\beta _{2}q^{5}+\cdots\) |
39.4.b.b | $4$ | $2.301$ | 4.0.1362828.1 | None | \(0\) | \(12\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+3q^{3}+(-4+\beta _{3})q^{4}+(2\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(39, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(39, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)