Properties

Label 392.2.u
Level 392392
Weight 22
Character orbit 392.u
Rep. character χ392(27,)\chi_{392}(27,\cdot)
Character field Q(ζ14)\Q(\zeta_{14})
Dimension 324324
Newform subspaces 11
Sturm bound 112112
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 392=2372 392 = 2^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 392.u (of order 1414 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 392 392
Character field: Q(ζ14)\Q(\zeta_{14})
Newform subspaces: 1 1
Sturm bound: 112112
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(392,[χ])M_{2}(392, [\chi]).

Total New Old
Modular forms 348 348 0
Cusp forms 324 324 0
Eisenstein series 24 24 0

Trace form

324q5q214q35q47q611q8+40q97q1010q11+28q1245q14+3q1614q1724q187q20+11q2249q2456q257q26+57q98+O(q100) 324 q - 5 q^{2} - 14 q^{3} - 5 q^{4} - 7 q^{6} - 11 q^{8} + 40 q^{9} - 7 q^{10} - 10 q^{11} + 28 q^{12} - 45 q^{14} + 3 q^{16} - 14 q^{17} - 24 q^{18} - 7 q^{20} + 11 q^{22} - 49 q^{24} - 56 q^{25} - 7 q^{26}+ \cdots - 57 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(392,[χ])S_{2}^{\mathrm{new}}(392, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
392.2.u.a 392.u 392.u 324324 3.1303.130 None 392.2.u.a 5-5 14-14 00 00 SU(2)[C14]\mathrm{SU}(2)[C_{14}]