Properties

Label 392.6.m
Level $392$
Weight $6$
Character orbit 392.m
Rep. character $\chi_{392}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $392$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 56 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(392, [\chi])\).

Total New Old
Modular forms 576 408 168
Cusp forms 544 392 152
Eisenstein series 32 16 16

Trace form

\( 392 q + 3 q^{2} + 6 q^{3} + 23 q^{4} + 594 q^{8} + 15230 q^{9} + 804 q^{10} - 1206 q^{11} + 1638 q^{12} - 2469 q^{16} + 6 q^{17} + 1081 q^{18} + 6 q^{19} - 1076 q^{22} + 570 q^{24} - 112498 q^{25} - 8886 q^{26}+ \cdots - 1213720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(392, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(392, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(392, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)