Properties

Label 3920.2.cj
Level $3920$
Weight $2$
Character orbit 3920.cj
Rep. character $\chi_{3920}(913,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $464$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.cj (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3920, [\chi])\).

Total New Old
Modular forms 2880 496 2384
Cusp forms 2496 464 2032
Eisenstein series 384 32 352

Trace form

\( 464 q - 6 q^{3} + 6 q^{5} - 4 q^{11} + 16 q^{15} + 6 q^{17} - 14 q^{23} + 2 q^{25} - 12 q^{31} + 30 q^{33} + 2 q^{37} + 16 q^{43} + 6 q^{45} + 30 q^{47} + 44 q^{51} + 2 q^{53} + 36 q^{57} + 12 q^{61} - 30 q^{65}+ \cdots + 18 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3920, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3920, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(980, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1960, [\chi])\)\(^{\oplus 2}\)