Properties

Label 3920.2.cr
Level 39203920
Weight 22
Character orbit 3920.cr
Rep. character χ3920(411,)\chi_{3920}(411,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 12801280
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3920=24572 3920 = 2^{4} \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3920.cr (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 112 112
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3920,[χ])M_{2}(3920, [\chi]).

Total New Old
Modular forms 2752 1280 1472
Cusp forms 2624 1280 1344
Eisenstein series 128 0 128

Trace form

1280q8q4+16q11+40q1660q1832q2232q2364q2920q32+32q37+32q43+44q44+20q46+16q5040q51+72q52+32q53+84q54++160q99+O(q100) 1280 q - 8 q^{4} + 16 q^{11} + 40 q^{16} - 60 q^{18} - 32 q^{22} - 32 q^{23} - 64 q^{29} - 20 q^{32} + 32 q^{37} + 32 q^{43} + 44 q^{44} + 20 q^{46} + 16 q^{50} - 40 q^{51} + 72 q^{52} + 32 q^{53} + 84 q^{54}+ \cdots + 160 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3920,[χ])S_{2}^{\mathrm{new}}(3920, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3920,[χ])S_{2}^{\mathrm{old}}(3920, [\chi]) into lower level spaces

S2old(3920,[χ]) S_{2}^{\mathrm{old}}(3920, [\chi]) \simeq S2new(112,[χ])S_{2}^{\mathrm{new}}(112, [\chi])4^{\oplus 4}\oplusS2new(560,[χ])S_{2}^{\mathrm{new}}(560, [\chi])2^{\oplus 2}\oplusS2new(784,[χ])S_{2}^{\mathrm{new}}(784, [\chi])2^{\oplus 2}