Defining parameters
Level: | \( N \) | \(=\) | \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 396.r (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 44 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(396, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 320 | 128 | 192 |
Cusp forms | 256 | 112 | 144 |
Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(396, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
396.2.r.a | $16$ | $3.162$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(5\) | \(0\) | \(6\) | \(0\) | \(q-\beta _{2}q^{2}+(-\beta _{2}-\beta _{4}-\beta _{5}+\beta _{6}+\beta _{10}+\cdots)q^{4}+\cdots\) |
396.2.r.b | $48$ | $3.162$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
396.2.r.c | $48$ | $3.162$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(396, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(396, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)