Properties

Label 396.4.a.d.1.1
Level $396$
Weight $4$
Character 396.1
Self dual yes
Analytic conductor $23.365$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,4,Mod(1,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 396.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.3647563623\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 396.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{7} +11.0000 q^{11} -88.0000 q^{13} +66.0000 q^{17} -40.0000 q^{19} -6.00000 q^{23} -125.000 q^{25} +54.0000 q^{29} +8.00000 q^{31} -106.000 q^{37} -354.000 q^{41} -124.000 q^{43} -546.000 q^{47} -339.000 q^{49} +408.000 q^{53} -552.000 q^{59} +404.000 q^{61} -4.00000 q^{67} -126.000 q^{71} -166.000 q^{73} +22.0000 q^{77} -874.000 q^{79} -444.000 q^{83} -1002.00 q^{89} -176.000 q^{91} -802.000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 2.00000 0.107990 0.0539949 0.998541i \(-0.482805\pi\)
0.0539949 + 0.998541i \(0.482805\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −88.0000 −1.87745 −0.938723 0.344671i \(-0.887990\pi\)
−0.938723 + 0.344671i \(0.887990\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 66.0000 0.941609 0.470804 0.882238i \(-0.343964\pi\)
0.470804 + 0.882238i \(0.343964\pi\)
\(18\) 0 0
\(19\) −40.0000 −0.482980 −0.241490 0.970403i \(-0.577636\pi\)
−0.241490 + 0.970403i \(0.577636\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.00000 −0.0543951 −0.0271975 0.999630i \(-0.508658\pi\)
−0.0271975 + 0.999630i \(0.508658\pi\)
\(24\) 0 0
\(25\) −125.000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 54.0000 0.345778 0.172889 0.984941i \(-0.444690\pi\)
0.172889 + 0.984941i \(0.444690\pi\)
\(30\) 0 0
\(31\) 8.00000 0.0463498 0.0231749 0.999731i \(-0.492623\pi\)
0.0231749 + 0.999731i \(0.492623\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −106.000 −0.470981 −0.235490 0.971877i \(-0.575670\pi\)
−0.235490 + 0.971877i \(0.575670\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −354.000 −1.34843 −0.674214 0.738536i \(-0.735517\pi\)
−0.674214 + 0.738536i \(0.735517\pi\)
\(42\) 0 0
\(43\) −124.000 −0.439763 −0.219882 0.975527i \(-0.570567\pi\)
−0.219882 + 0.975527i \(0.570567\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −546.000 −1.69452 −0.847258 0.531181i \(-0.821748\pi\)
−0.847258 + 0.531181i \(0.821748\pi\)
\(48\) 0 0
\(49\) −339.000 −0.988338
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 408.000 1.05742 0.528709 0.848803i \(-0.322676\pi\)
0.528709 + 0.848803i \(0.322676\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −552.000 −1.21804 −0.609019 0.793155i \(-0.708437\pi\)
−0.609019 + 0.793155i \(0.708437\pi\)
\(60\) 0 0
\(61\) 404.000 0.847982 0.423991 0.905666i \(-0.360629\pi\)
0.423991 + 0.905666i \(0.360629\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.00729370 −0.00364685 0.999993i \(-0.501161\pi\)
−0.00364685 + 0.999993i \(0.501161\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −126.000 −0.210612 −0.105306 0.994440i \(-0.533582\pi\)
−0.105306 + 0.994440i \(0.533582\pi\)
\(72\) 0 0
\(73\) −166.000 −0.266148 −0.133074 0.991106i \(-0.542485\pi\)
−0.133074 + 0.991106i \(0.542485\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 22.0000 0.0325602
\(78\) 0 0
\(79\) −874.000 −1.24472 −0.622359 0.782732i \(-0.713825\pi\)
−0.622359 + 0.782732i \(0.713825\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −444.000 −0.587173 −0.293586 0.955933i \(-0.594849\pi\)
−0.293586 + 0.955933i \(0.594849\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1002.00 −1.19339 −0.596695 0.802468i \(-0.703520\pi\)
−0.596695 + 0.802468i \(0.703520\pi\)
\(90\) 0 0
\(91\) −176.000 −0.202745
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −802.000 −0.839492 −0.419746 0.907642i \(-0.637881\pi\)
−0.419746 + 0.907642i \(0.637881\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1710.00 1.68467 0.842333 0.538957i \(-0.181181\pi\)
0.842333 + 0.538957i \(0.181181\pi\)
\(102\) 0 0
\(103\) 572.000 0.547193 0.273596 0.961845i \(-0.411787\pi\)
0.273596 + 0.961845i \(0.411787\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 108.000 0.0975771 0.0487886 0.998809i \(-0.484464\pi\)
0.0487886 + 0.998809i \(0.484464\pi\)
\(108\) 0 0
\(109\) −712.000 −0.625663 −0.312831 0.949809i \(-0.601277\pi\)
−0.312831 + 0.949809i \(0.601277\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1302.00 1.08391 0.541955 0.840407i \(-0.317684\pi\)
0.541955 + 0.840407i \(0.317684\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 132.000 0.101684
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 854.000 0.596695 0.298347 0.954457i \(-0.403565\pi\)
0.298347 + 0.954457i \(0.403565\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1548.00 1.03244 0.516219 0.856457i \(-0.327339\pi\)
0.516219 + 0.856457i \(0.327339\pi\)
\(132\) 0 0
\(133\) −80.0000 −0.0521570
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1194.00 0.744601 0.372300 0.928112i \(-0.378569\pi\)
0.372300 + 0.928112i \(0.378569\pi\)
\(138\) 0 0
\(139\) −1816.00 −1.10814 −0.554069 0.832471i \(-0.686926\pi\)
−0.554069 + 0.832471i \(0.686926\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −968.000 −0.566072
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2046.00 −1.12493 −0.562466 0.826820i \(-0.690147\pi\)
−0.562466 + 0.826820i \(0.690147\pi\)
\(150\) 0 0
\(151\) 1406.00 0.757739 0.378870 0.925450i \(-0.376313\pi\)
0.378870 + 0.925450i \(0.376313\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2354.00 1.19662 0.598311 0.801264i \(-0.295839\pi\)
0.598311 + 0.801264i \(0.295839\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −12.0000 −0.00587411
\(162\) 0 0
\(163\) −988.000 −0.474762 −0.237381 0.971417i \(-0.576289\pi\)
−0.237381 + 0.971417i \(0.576289\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −732.000 −0.339185 −0.169592 0.985514i \(-0.554245\pi\)
−0.169592 + 0.985514i \(0.554245\pi\)
\(168\) 0 0
\(169\) 5547.00 2.52481
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2790.00 1.22613 0.613063 0.790034i \(-0.289937\pi\)
0.613063 + 0.790034i \(0.289937\pi\)
\(174\) 0 0
\(175\) −250.000 −0.107990
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 408.000 0.170365 0.0851825 0.996365i \(-0.472853\pi\)
0.0851825 + 0.996365i \(0.472853\pi\)
\(180\) 0 0
\(181\) 3458.00 1.42006 0.710031 0.704171i \(-0.248681\pi\)
0.710031 + 0.704171i \(0.248681\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 726.000 0.283906
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3498.00 −1.32516 −0.662582 0.748989i \(-0.730539\pi\)
−0.662582 + 0.748989i \(0.730539\pi\)
\(192\) 0 0
\(193\) 3878.00 1.44634 0.723172 0.690668i \(-0.242683\pi\)
0.723172 + 0.690668i \(0.242683\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1710.00 0.618439 0.309219 0.950991i \(-0.399932\pi\)
0.309219 + 0.950991i \(0.399932\pi\)
\(198\) 0 0
\(199\) 2876.00 1.02449 0.512247 0.858838i \(-0.328813\pi\)
0.512247 + 0.858838i \(0.328813\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 108.000 0.0373405
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −440.000 −0.145624
\(210\) 0 0
\(211\) −3604.00 −1.17587 −0.587937 0.808906i \(-0.700060\pi\)
−0.587937 + 0.808906i \(0.700060\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.0000 0.00500530
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5808.00 −1.76782
\(222\) 0 0
\(223\) −6112.00 −1.83538 −0.917690 0.397297i \(-0.869948\pi\)
−0.917690 + 0.397297i \(0.869948\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2796.00 0.817520 0.408760 0.912642i \(-0.365961\pi\)
0.408760 + 0.912642i \(0.365961\pi\)
\(228\) 0 0
\(229\) −214.000 −0.0617534 −0.0308767 0.999523i \(-0.509830\pi\)
−0.0308767 + 0.999523i \(0.509830\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5142.00 1.44577 0.722883 0.690970i \(-0.242816\pi\)
0.722883 + 0.690970i \(0.242816\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 156.000 0.0422209 0.0211105 0.999777i \(-0.493280\pi\)
0.0211105 + 0.999777i \(0.493280\pi\)
\(240\) 0 0
\(241\) 3350.00 0.895404 0.447702 0.894183i \(-0.352242\pi\)
0.447702 + 0.894183i \(0.352242\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3520.00 0.906770
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5616.00 1.41227 0.706133 0.708079i \(-0.250438\pi\)
0.706133 + 0.708079i \(0.250438\pi\)
\(252\) 0 0
\(253\) −66.0000 −0.0164007
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7122.00 −1.72863 −0.864315 0.502950i \(-0.832248\pi\)
−0.864315 + 0.502950i \(0.832248\pi\)
\(258\) 0 0
\(259\) −212.000 −0.0508612
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5568.00 1.30547 0.652733 0.757588i \(-0.273622\pi\)
0.652733 + 0.757588i \(0.273622\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2016.00 −0.456943 −0.228472 0.973551i \(-0.573373\pi\)
−0.228472 + 0.973551i \(0.573373\pi\)
\(270\) 0 0
\(271\) −5974.00 −1.33909 −0.669547 0.742769i \(-0.733512\pi\)
−0.669547 + 0.742769i \(0.733512\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1375.00 −0.301511
\(276\) 0 0
\(277\) −1324.00 −0.287189 −0.143595 0.989637i \(-0.545866\pi\)
−0.143595 + 0.989637i \(0.545866\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5178.00 1.09927 0.549633 0.835406i \(-0.314768\pi\)
0.549633 + 0.835406i \(0.314768\pi\)
\(282\) 0 0
\(283\) −4492.00 −0.943540 −0.471770 0.881722i \(-0.656385\pi\)
−0.471770 + 0.881722i \(0.656385\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −708.000 −0.145616
\(288\) 0 0
\(289\) −557.000 −0.113373
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −486.000 −0.0969025 −0.0484512 0.998826i \(-0.515429\pi\)
−0.0484512 + 0.998826i \(0.515429\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 528.000 0.102124
\(300\) 0 0
\(301\) −248.000 −0.0474900
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −9664.00 −1.79659 −0.898296 0.439391i \(-0.855194\pi\)
−0.898296 + 0.439391i \(0.855194\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9246.00 −1.68583 −0.842914 0.538048i \(-0.819162\pi\)
−0.842914 + 0.538048i \(0.819162\pi\)
\(312\) 0 0
\(313\) −9718.00 −1.75493 −0.877466 0.479638i \(-0.840768\pi\)
−0.877466 + 0.479638i \(0.840768\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7236.00 1.28206 0.641032 0.767514i \(-0.278507\pi\)
0.641032 + 0.767514i \(0.278507\pi\)
\(318\) 0 0
\(319\) 594.000 0.104256
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2640.00 −0.454779
\(324\) 0 0
\(325\) 11000.0 1.87745
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1092.00 −0.182991
\(330\) 0 0
\(331\) −10540.0 −1.75024 −0.875122 0.483902i \(-0.839219\pi\)
−0.875122 + 0.483902i \(0.839219\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3382.00 −0.546674 −0.273337 0.961918i \(-0.588127\pi\)
−0.273337 + 0.961918i \(0.588127\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 88.0000 0.0139750
\(342\) 0 0
\(343\) −1364.00 −0.214720
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4308.00 0.666471 0.333236 0.942844i \(-0.391860\pi\)
0.333236 + 0.942844i \(0.391860\pi\)
\(348\) 0 0
\(349\) 7040.00 1.07978 0.539889 0.841736i \(-0.318466\pi\)
0.539889 + 0.841736i \(0.318466\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8010.00 −1.20773 −0.603866 0.797086i \(-0.706374\pi\)
−0.603866 + 0.797086i \(0.706374\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10932.0 −1.60716 −0.803578 0.595200i \(-0.797073\pi\)
−0.803578 + 0.595200i \(0.797073\pi\)
\(360\) 0 0
\(361\) −5259.00 −0.766730
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 6104.00 0.868191 0.434096 0.900867i \(-0.357068\pi\)
0.434096 + 0.900867i \(0.357068\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 816.000 0.114190
\(372\) 0 0
\(373\) 440.000 0.0610786 0.0305393 0.999534i \(-0.490278\pi\)
0.0305393 + 0.999534i \(0.490278\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4752.00 −0.649179
\(378\) 0 0
\(379\) 7004.00 0.949265 0.474632 0.880184i \(-0.342581\pi\)
0.474632 + 0.880184i \(0.342581\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12774.0 −1.70423 −0.852116 0.523353i \(-0.824681\pi\)
−0.852116 + 0.523353i \(0.824681\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4992.00 0.650654 0.325327 0.945602i \(-0.394526\pi\)
0.325327 + 0.945602i \(0.394526\pi\)
\(390\) 0 0
\(391\) −396.000 −0.0512189
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3362.00 0.425023 0.212511 0.977159i \(-0.431836\pi\)
0.212511 + 0.977159i \(0.431836\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10170.0 1.26650 0.633249 0.773948i \(-0.281721\pi\)
0.633249 + 0.773948i \(0.281721\pi\)
\(402\) 0 0
\(403\) −704.000 −0.0870192
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1166.00 −0.142006
\(408\) 0 0
\(409\) −4210.00 −0.508976 −0.254488 0.967076i \(-0.581907\pi\)
−0.254488 + 0.967076i \(0.581907\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1104.00 −0.131536
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15480.0 −1.80489 −0.902443 0.430809i \(-0.858228\pi\)
−0.902443 + 0.430809i \(0.858228\pi\)
\(420\) 0 0
\(421\) −2698.00 −0.312334 −0.156167 0.987731i \(-0.549914\pi\)
−0.156167 + 0.987731i \(0.549914\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −8250.00 −0.941609
\(426\) 0 0
\(427\) 808.000 0.0915734
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 720.000 0.0804668 0.0402334 0.999190i \(-0.487190\pi\)
0.0402334 + 0.999190i \(0.487190\pi\)
\(432\) 0 0
\(433\) −16438.0 −1.82439 −0.912194 0.409759i \(-0.865613\pi\)
−0.912194 + 0.409759i \(0.865613\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 240.000 0.0262718
\(438\) 0 0
\(439\) 16598.0 1.80451 0.902254 0.431204i \(-0.141911\pi\)
0.902254 + 0.431204i \(0.141911\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13392.0 1.43628 0.718141 0.695897i \(-0.244993\pi\)
0.718141 + 0.695897i \(0.244993\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 906.000 0.0952267 0.0476133 0.998866i \(-0.484838\pi\)
0.0476133 + 0.998866i \(0.484838\pi\)
\(450\) 0 0
\(451\) −3894.00 −0.406566
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8170.00 −0.836272 −0.418136 0.908384i \(-0.637317\pi\)
−0.418136 + 0.908384i \(0.637317\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12378.0 1.25054 0.625272 0.780407i \(-0.284988\pi\)
0.625272 + 0.780407i \(0.284988\pi\)
\(462\) 0 0
\(463\) −6964.00 −0.699016 −0.349508 0.936933i \(-0.613651\pi\)
−0.349508 + 0.936933i \(0.613651\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8052.00 0.797863 0.398932 0.916981i \(-0.369381\pi\)
0.398932 + 0.916981i \(0.369381\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.000787645 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1364.00 −0.132594
\(474\) 0 0
\(475\) 5000.00 0.482980
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10872.0 1.03707 0.518533 0.855058i \(-0.326478\pi\)
0.518533 + 0.855058i \(0.326478\pi\)
\(480\) 0 0
\(481\) 9328.00 0.884242
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8804.00 0.819194 0.409597 0.912267i \(-0.365669\pi\)
0.409597 + 0.912267i \(0.365669\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8940.00 −0.821704 −0.410852 0.911702i \(-0.634769\pi\)
−0.410852 + 0.911702i \(0.634769\pi\)
\(492\) 0 0
\(493\) 3564.00 0.325587
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −252.000 −0.0227440
\(498\) 0 0
\(499\) 1964.00 0.176194 0.0880969 0.996112i \(-0.471921\pi\)
0.0880969 + 0.996112i \(0.471921\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21252.0 1.88386 0.941928 0.335814i \(-0.109011\pi\)
0.941928 + 0.335814i \(0.109011\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12912.0 −1.12439 −0.562195 0.827005i \(-0.690043\pi\)
−0.562195 + 0.827005i \(0.690043\pi\)
\(510\) 0 0
\(511\) −332.000 −0.0287413
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −6006.00 −0.510916
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10602.0 0.891520 0.445760 0.895152i \(-0.352933\pi\)
0.445760 + 0.895152i \(0.352933\pi\)
\(522\) 0 0
\(523\) 5084.00 0.425063 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 528.000 0.0436433
\(528\) 0 0
\(529\) −12131.0 −0.997041
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 31152.0 2.53160
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3729.00 −0.297995
\(540\) 0 0
\(541\) 4160.00 0.330596 0.165298 0.986244i \(-0.447141\pi\)
0.165298 + 0.986244i \(0.447141\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3368.00 0.263264 0.131632 0.991299i \(-0.457978\pi\)
0.131632 + 0.991299i \(0.457978\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2160.00 −0.167004
\(552\) 0 0
\(553\) −1748.00 −0.134417
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −15534.0 −1.18168 −0.590841 0.806788i \(-0.701204\pi\)
−0.590841 + 0.806788i \(0.701204\pi\)
\(558\) 0 0
\(559\) 10912.0 0.825632
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23628.0 −1.76874 −0.884371 0.466785i \(-0.845412\pi\)
−0.884371 + 0.466785i \(0.845412\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2490.00 0.183456 0.0917278 0.995784i \(-0.470761\pi\)
0.0917278 + 0.995784i \(0.470761\pi\)
\(570\) 0 0
\(571\) 4232.00 0.310164 0.155082 0.987902i \(-0.450436\pi\)
0.155082 + 0.987902i \(0.450436\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 750.000 0.0543951
\(576\) 0 0
\(577\) 12446.0 0.897979 0.448989 0.893537i \(-0.351784\pi\)
0.448989 + 0.893537i \(0.351784\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −888.000 −0.0634087
\(582\) 0 0
\(583\) 4488.00 0.318823
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20112.0 1.41416 0.707079 0.707134i \(-0.250012\pi\)
0.707079 + 0.707134i \(0.250012\pi\)
\(588\) 0 0
\(589\) −320.000 −0.0223860
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10866.0 0.752467 0.376234 0.926525i \(-0.377219\pi\)
0.376234 + 0.926525i \(0.377219\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19422.0 −1.32481 −0.662405 0.749146i \(-0.730464\pi\)
−0.662405 + 0.749146i \(0.730464\pi\)
\(600\) 0 0
\(601\) 6602.00 0.448089 0.224044 0.974579i \(-0.428074\pi\)
0.224044 + 0.974579i \(0.428074\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 26966.0 1.80316 0.901578 0.432616i \(-0.142409\pi\)
0.901578 + 0.432616i \(0.142409\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48048.0 3.18137
\(612\) 0 0
\(613\) −436.000 −0.0287274 −0.0143637 0.999897i \(-0.504572\pi\)
−0.0143637 + 0.999897i \(0.504572\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10938.0 −0.713691 −0.356845 0.934163i \(-0.616148\pi\)
−0.356845 + 0.934163i \(0.616148\pi\)
\(618\) 0 0
\(619\) −8620.00 −0.559721 −0.279860 0.960041i \(-0.590288\pi\)
−0.279860 + 0.960041i \(0.590288\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2004.00 −0.128874
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6996.00 −0.443480
\(630\) 0 0
\(631\) −13840.0 −0.873156 −0.436578 0.899666i \(-0.643810\pi\)
−0.436578 + 0.899666i \(0.643810\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 29832.0 1.85555
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −23622.0 −1.45556 −0.727779 0.685812i \(-0.759447\pi\)
−0.727779 + 0.685812i \(0.759447\pi\)
\(642\) 0 0
\(643\) 22772.0 1.39664 0.698320 0.715785i \(-0.253931\pi\)
0.698320 + 0.715785i \(0.253931\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5718.00 −0.347446 −0.173723 0.984795i \(-0.555580\pi\)
−0.173723 + 0.984795i \(0.555580\pi\)
\(648\) 0 0
\(649\) −6072.00 −0.367252
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6852.00 −0.410627 −0.205314 0.978696i \(-0.565821\pi\)
−0.205314 + 0.978696i \(0.565821\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10188.0 −0.602228 −0.301114 0.953588i \(-0.597358\pi\)
−0.301114 + 0.953588i \(0.597358\pi\)
\(660\) 0 0
\(661\) −9094.00 −0.535122 −0.267561 0.963541i \(-0.586218\pi\)
−0.267561 + 0.963541i \(0.586218\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −324.000 −0.0188086
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4444.00 0.255676
\(672\) 0 0
\(673\) −8362.00 −0.478947 −0.239474 0.970903i \(-0.576975\pi\)
−0.239474 + 0.970903i \(0.576975\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31686.0 1.79881 0.899403 0.437120i \(-0.144002\pi\)
0.899403 + 0.437120i \(0.144002\pi\)
\(678\) 0 0
\(679\) −1604.00 −0.0906567
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22248.0 −1.24641 −0.623204 0.782060i \(-0.714169\pi\)
−0.623204 + 0.782060i \(0.714169\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −35904.0 −1.98524
\(690\) 0 0
\(691\) 12860.0 0.707985 0.353992 0.935248i \(-0.384824\pi\)
0.353992 + 0.935248i \(0.384824\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −23364.0 −1.26969
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7878.00 −0.424462 −0.212231 0.977220i \(-0.568073\pi\)
−0.212231 + 0.977220i \(0.568073\pi\)
\(702\) 0 0
\(703\) 4240.00 0.227475
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3420.00 0.181927
\(708\) 0 0
\(709\) −22966.0 −1.21651 −0.608255 0.793741i \(-0.708130\pi\)
−0.608255 + 0.793741i \(0.708130\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −48.0000 −0.00252120
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1194.00 0.0619314 0.0309657 0.999520i \(-0.490142\pi\)
0.0309657 + 0.999520i \(0.490142\pi\)
\(720\) 0 0
\(721\) 1144.00 0.0590912
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6750.00 −0.345778
\(726\) 0 0
\(727\) −16252.0 −0.829097 −0.414548 0.910027i \(-0.636060\pi\)
−0.414548 + 0.910027i \(0.636060\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8184.00 −0.414085
\(732\) 0 0
\(733\) 3368.00 0.169713 0.0848567 0.996393i \(-0.472957\pi\)
0.0848567 + 0.996393i \(0.472957\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −44.0000 −0.00219913
\(738\) 0 0
\(739\) 33044.0 1.64485 0.822424 0.568874i \(-0.192621\pi\)
0.822424 + 0.568874i \(0.192621\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 39660.0 1.95826 0.979128 0.203244i \(-0.0651486\pi\)
0.979128 + 0.203244i \(0.0651486\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 216.000 0.0105373
\(750\) 0 0
\(751\) −19240.0 −0.934857 −0.467428 0.884031i \(-0.654819\pi\)
−0.467428 + 0.884031i \(0.654819\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1310.00 0.0628966 0.0314483 0.999505i \(-0.489988\pi\)
0.0314483 + 0.999505i \(0.489988\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6918.00 −0.329537 −0.164768 0.986332i \(-0.552688\pi\)
−0.164768 + 0.986332i \(0.552688\pi\)
\(762\) 0 0
\(763\) −1424.00 −0.0675652
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 48576.0 2.28680
\(768\) 0 0
\(769\) −25498.0 −1.19568 −0.597842 0.801614i \(-0.703975\pi\)
−0.597842 + 0.801614i \(0.703975\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17688.0 −0.823018 −0.411509 0.911406i \(-0.634998\pi\)
−0.411509 + 0.911406i \(0.634998\pi\)
\(774\) 0 0
\(775\) −1000.00 −0.0463498
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14160.0 0.651264
\(780\) 0 0
\(781\) −1386.00 −0.0635019
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −3364.00 −0.152368 −0.0761840 0.997094i \(-0.524274\pi\)
−0.0761840 + 0.997094i \(0.524274\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2604.00 0.117051
\(792\) 0 0
\(793\) −35552.0 −1.59204
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15456.0 0.686925 0.343463 0.939166i \(-0.388400\pi\)
0.343463 + 0.939166i \(0.388400\pi\)
\(798\) 0 0
\(799\) −36036.0 −1.59557
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1826.00 −0.0802468
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −8154.00 −0.354363 −0.177181 0.984178i \(-0.556698\pi\)
−0.177181 + 0.984178i \(0.556698\pi\)
\(810\) 0 0
\(811\) −28660.0 −1.24092 −0.620462 0.784237i \(-0.713055\pi\)
−0.620462 + 0.784237i \(0.713055\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4960.00 0.212397
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6570.00 −0.279287 −0.139643 0.990202i \(-0.544596\pi\)
−0.139643 + 0.990202i \(0.544596\pi\)
\(822\) 0 0
\(823\) −26824.0 −1.13612 −0.568059 0.822988i \(-0.692306\pi\)
−0.568059 + 0.822988i \(0.692306\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −31452.0 −1.32248 −0.661241 0.750173i \(-0.729970\pi\)
−0.661241 + 0.750173i \(0.729970\pi\)
\(828\) 0 0
\(829\) −15178.0 −0.635891 −0.317946 0.948109i \(-0.602993\pi\)
−0.317946 + 0.948109i \(0.602993\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −22374.0 −0.930628
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12066.0 −0.496501 −0.248251 0.968696i \(-0.579856\pi\)
−0.248251 + 0.968696i \(0.579856\pi\)
\(840\) 0 0
\(841\) −21473.0 −0.880438
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 242.000 0.00981726
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 636.000 0.0256190
\(852\) 0 0
\(853\) 68.0000 0.00272951 0.00136476 0.999999i \(-0.499566\pi\)
0.00136476 + 0.999999i \(0.499566\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25158.0 1.00278 0.501389 0.865222i \(-0.332823\pi\)
0.501389 + 0.865222i \(0.332823\pi\)
\(858\) 0 0
\(859\) −13732.0 −0.545436 −0.272718 0.962094i \(-0.587923\pi\)
−0.272718 + 0.962094i \(0.587923\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32694.0 1.28959 0.644795 0.764355i \(-0.276943\pi\)
0.644795 + 0.764355i \(0.276943\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9614.00 −0.375296
\(870\) 0 0
\(871\) 352.000 0.0136935
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 34976.0 1.34670 0.673350 0.739324i \(-0.264855\pi\)
0.673350 + 0.739324i \(0.264855\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −39354.0 −1.50496 −0.752480 0.658615i \(-0.771143\pi\)
−0.752480 + 0.658615i \(0.771143\pi\)
\(882\) 0 0
\(883\) −9820.00 −0.374257 −0.187129 0.982335i \(-0.559918\pi\)
−0.187129 + 0.982335i \(0.559918\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25356.0 −0.959832 −0.479916 0.877314i \(-0.659333\pi\)
−0.479916 + 0.877314i \(0.659333\pi\)
\(888\) 0 0
\(889\) 1708.00 0.0644370
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 21840.0 0.818419
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 432.000 0.0160267
\(900\) 0 0
\(901\) 26928.0 0.995673
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 40892.0 1.49702 0.748510 0.663124i \(-0.230770\pi\)
0.748510 + 0.663124i \(0.230770\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −27966.0 −1.01707 −0.508537 0.861040i \(-0.669814\pi\)
−0.508537 + 0.861040i \(0.669814\pi\)
\(912\) 0 0
\(913\) −4884.00 −0.177039
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3096.00 0.111493
\(918\) 0 0
\(919\) −14038.0 −0.503886 −0.251943 0.967742i \(-0.581069\pi\)
−0.251943 + 0.967742i \(0.581069\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11088.0 0.395413
\(924\) 0 0
\(925\) 13250.0 0.470981
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4170.00 0.147269 0.0736347 0.997285i \(-0.476540\pi\)
0.0736347 + 0.997285i \(0.476540\pi\)
\(930\) 0 0
\(931\) 13560.0 0.477348
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −41830.0 −1.45841 −0.729203 0.684297i \(-0.760109\pi\)
−0.729203 + 0.684297i \(0.760109\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −28458.0 −0.985871 −0.492935 0.870066i \(-0.664076\pi\)
−0.492935 + 0.870066i \(0.664076\pi\)
\(942\) 0 0
\(943\) 2124.00 0.0733478
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9420.00 −0.323241 −0.161620 0.986853i \(-0.551672\pi\)
−0.161620 + 0.986853i \(0.551672\pi\)
\(948\) 0 0
\(949\) 14608.0 0.499679
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7734.00 0.262884 0.131442 0.991324i \(-0.458039\pi\)
0.131442 + 0.991324i \(0.458039\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2388.00 0.0804093
\(960\) 0 0
\(961\) −29727.0 −0.997852
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 31670.0 1.05319 0.526597 0.850115i \(-0.323468\pi\)
0.526597 + 0.850115i \(0.323468\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 16680.0 0.551274 0.275637 0.961262i \(-0.411111\pi\)
0.275637 + 0.961262i \(0.411111\pi\)
\(972\) 0 0
\(973\) −3632.00 −0.119668
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26718.0 −0.874907 −0.437454 0.899241i \(-0.644120\pi\)
−0.437454 + 0.899241i \(0.644120\pi\)
\(978\) 0 0
\(979\) −11022.0 −0.359821
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20238.0 −0.656655 −0.328328 0.944564i \(-0.606485\pi\)
−0.328328 + 0.944564i \(0.606485\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 744.000 0.0239210
\(990\) 0 0
\(991\) 25544.0 0.818801 0.409401 0.912355i \(-0.365738\pi\)
0.409401 + 0.912355i \(0.365738\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 15968.0 0.507233 0.253617 0.967305i \(-0.418380\pi\)
0.253617 + 0.967305i \(0.418380\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.4.a.d.1.1 1
3.2 odd 2 132.4.a.b.1.1 1
4.3 odd 2 1584.4.a.j.1.1 1
12.11 even 2 528.4.a.i.1.1 1
24.5 odd 2 2112.4.a.t.1.1 1
24.11 even 2 2112.4.a.f.1.1 1
33.32 even 2 1452.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.4.a.b.1.1 1 3.2 odd 2
396.4.a.d.1.1 1 1.1 even 1 trivial
528.4.a.i.1.1 1 12.11 even 2
1452.4.a.b.1.1 1 33.32 even 2
1584.4.a.j.1.1 1 4.3 odd 2
2112.4.a.f.1.1 1 24.11 even 2
2112.4.a.t.1.1 1 24.5 odd 2