Defining parameters
Level: | \( N \) | \(=\) | \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3960.cd (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 495 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(864\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3960, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 8 | 64 |
Cusp forms | 40 | 8 | 32 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 8 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3960, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3960.1.cd.a | $8$ | $1.976$ | \(\Q(\zeta_{24})\) | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{24}^{6}q^{3}+\zeta_{24}^{10}q^{5}+(-\zeta_{24}^{5}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3960, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3960, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1980, [\chi])\)\(^{\oplus 2}\)