Properties

Label 3960.1.dv
Level $3960$
Weight $1$
Character orbit 3960.dv
Rep. character $\chi_{3960}(269,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $0$
Newform subspaces $0$
Sturm bound $864$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3960.dv (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1320 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 0 \)
Sturm bound: \(864\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3960, [\chi])\).

Total New Old
Modular forms 128 0 128
Cusp forms 64 0 64
Eisenstein series 64 0 64

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 0

Decomposition of \(S_{1}^{\mathrm{old}}(3960, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3960, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1320, [\chi])\)\(^{\oplus 2}\)