Defining parameters
Level: | \( N \) | \(=\) | \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3960.eg (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1320 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(864\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3960, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 96 | 32 | 64 |
Cusp forms | 32 | 32 | 0 |
Eisenstein series | 64 | 0 | 64 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 32 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3960, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3960.1.eg.a | $16$ | $1.976$ | \(\Q(\zeta_{40})\) | $D_{20}$ | \(\Q(\sqrt{-10}) \) | None | \(-4\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{40}^{16}q^{2}-\zeta_{40}^{12}q^{4}+\zeta_{40}^{14}q^{5}+\cdots\) |
3960.1.eg.b | $16$ | $1.976$ | \(\Q(\zeta_{40})\) | $D_{20}$ | \(\Q(\sqrt{-10}) \) | None | \(4\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{40}^{16}q^{2}-\zeta_{40}^{12}q^{4}-\zeta_{40}^{14}q^{5}+\cdots\) |