Properties

Label 3960.1.eg
Level $3960$
Weight $1$
Character orbit 3960.eg
Rep. character $\chi_{3960}(899,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $32$
Newform subspaces $2$
Sturm bound $864$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3960.eg (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1320 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 2 \)
Sturm bound: \(864\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3960, [\chi])\).

Total New Old
Modular forms 96 32 64
Cusp forms 32 32 0
Eisenstein series 64 0 64

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 32 0 0 0

Trace form

\( 32 q - 8 q^{4} - 8 q^{16} + 8 q^{25} + 8 q^{49} - 8 q^{64} - 16 q^{91} + 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3960, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3960.1.eg.a 3960.eg 1320.ca $16$ $1.976$ \(\Q(\zeta_{40})\) $D_{20}$ \(\Q(\sqrt{-10}) \) None 3960.1.eg.a \(-4\) \(0\) \(0\) \(0\) \(q+\zeta_{40}^{16}q^{2}-\zeta_{40}^{12}q^{4}+\zeta_{40}^{14}q^{5}+\cdots\)
3960.1.eg.b 3960.eg 1320.ca $16$ $1.976$ \(\Q(\zeta_{40})\) $D_{20}$ \(\Q(\sqrt{-10}) \) None 3960.1.eg.a \(4\) \(0\) \(0\) \(0\) \(q-\zeta_{40}^{16}q^{2}-\zeta_{40}^{12}q^{4}-\zeta_{40}^{14}q^{5}+\cdots\)