Defining parameters
Level: | \( N \) | \(=\) | \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3960.cy (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(1728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3960, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1760 | 360 | 1400 |
Cusp forms | 1696 | 360 | 1336 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3960, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(3960, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3960, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(990, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1980, [\chi])\)\(^{\oplus 2}\)