Properties

Label 3960.2.er
Level $3960$
Weight $2$
Character orbit 3960.er
Rep. character $\chi_{3960}(1033,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $864$
Sturm bound $1728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.er (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 495 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3960, [\chi])\).

Total New Old
Modular forms 3520 864 2656
Cusp forms 3392 864 2528
Eisenstein series 128 0 128

Trace form

\( 864 q - 12 q^{15} + 24 q^{27} + 12 q^{33} + 32 q^{45} + 12 q^{47} + 24 q^{53} - 96 q^{71} + 12 q^{75} + 16 q^{77} + 64 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3960, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3960, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3960, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(990, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1980, [\chi])\)\(^{\oplus 2}\)