Properties

Label 3971.2
Level 3971
Weight 2
Dimension 631220
Nonzero newspaces 24
Sturm bound 2599200
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3971 = 11 \cdot 19^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(2599200\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(3971))\).

Total New Old
Modular forms 654840 639652 15188
Cusp forms 644761 631220 13541
Eisenstein series 10079 8432 1647

Trace form

\( 631220 q - 1223 q^{2} - 1221 q^{3} - 1215 q^{4} - 1217 q^{5} - 1210 q^{6} - 1218 q^{7} - 1209 q^{8} - 1213 q^{9} - 1208 q^{10} - 1375 q^{11} - 2776 q^{12} - 1254 q^{13} - 1268 q^{14} - 1273 q^{15} - 1341 q^{16}+ \cdots - 1636 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(3971))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3971.2.a \(\chi_{3971}(1, \cdot)\) 3971.2.a.a 1 1
3971.2.a.b 1
3971.2.a.c 2
3971.2.a.d 2
3971.2.a.e 3
3971.2.a.f 3
3971.2.a.g 4
3971.2.a.h 5
3971.2.a.i 7
3971.2.a.j 9
3971.2.a.k 9
3971.2.a.l 9
3971.2.a.m 9
3971.2.a.n 10
3971.2.a.o 10
3971.2.a.p 10
3971.2.a.q 18
3971.2.a.r 18
3971.2.a.s 21
3971.2.a.t 21
3971.2.a.u 24
3971.2.a.v 24
3971.2.a.w 24
3971.2.a.x 40
3971.2.d \(\chi_{3971}(3970, \cdot)\) n/a 324 1
3971.2.e \(\chi_{3971}(2234, \cdot)\) n/a 564 2
3971.2.f \(\chi_{3971}(1445, \cdot)\) n/a 1296 4
3971.2.g \(\chi_{3971}(791, \cdot)\) n/a 648 2
3971.2.j \(\chi_{3971}(595, \cdot)\) n/a 1704 6
3971.2.k \(\chi_{3971}(360, \cdot)\) n/a 1296 4
3971.2.n \(\chi_{3971}(653, \cdot)\) n/a 2592 8
3971.2.p \(\chi_{3971}(307, \cdot)\) n/a 1944 6
3971.2.r \(\chi_{3971}(210, \cdot)\) n/a 5724 18
3971.2.u \(\chi_{3971}(293, \cdot)\) n/a 2592 8
3971.2.v \(\chi_{3971}(208, \cdot)\) n/a 6804 18
3971.2.y \(\chi_{3971}(234, \cdot)\) n/a 7776 24
3971.2.z \(\chi_{3971}(45, \cdot)\) n/a 11448 36
3971.2.bb \(\chi_{3971}(116, \cdot)\) n/a 7776 24
3971.2.bd \(\chi_{3971}(20, \cdot)\) n/a 27216 72
3971.2.bg \(\chi_{3971}(65, \cdot)\) n/a 13608 36
3971.2.bh \(\chi_{3971}(23, \cdot)\) n/a 34128 108
3971.2.bk \(\chi_{3971}(18, \cdot)\) n/a 27216 72
3971.2.bl \(\chi_{3971}(26, \cdot)\) n/a 54432 144
3971.2.bn \(\chi_{3971}(10, \cdot)\) n/a 40824 108
3971.2.bp \(\chi_{3971}(8, \cdot)\) n/a 54432 144
3971.2.bs \(\chi_{3971}(4, \cdot)\) n/a 163296 432
3971.2.bu \(\chi_{3971}(2, \cdot)\) n/a 163296 432

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(3971))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(3971)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(209))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(361))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3971))\)\(^{\oplus 1}\)