Properties

Label 399.2.a
Level 399399
Weight 22
Character orbit 399.a
Rep. character χ399(1,)\chi_{399}(1,\cdot)
Character field Q\Q
Dimension 1919
Newform subspaces 77
Sturm bound 106106
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.a (trivial)
Character field: Q\Q
Newform subspaces: 7 7
Sturm bound: 106106
Trace bound: 33
Distinguishing TpT_p: 22, 55

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(399))M_{2}(\Gamma_0(399)).

Total New Old
Modular forms 56 19 37
Cusp forms 49 19 30
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

33771919FrickeDim
++++++++11
++++--33
++-++-55
++--++11
-++++-44
----55
Plus space++22
Minus space-1717

Trace form

19q+5q2q3+21q4+10q53q6+3q7+9q8+19q9+6q10+4q11+9q12+10q13+q146q15+29q16+22q17+5q18q192q20++4q99+O(q100) 19 q + 5 q^{2} - q^{3} + 21 q^{4} + 10 q^{5} - 3 q^{6} + 3 q^{7} + 9 q^{8} + 19 q^{9} + 6 q^{10} + 4 q^{11} + 9 q^{12} + 10 q^{13} + q^{14} - 6 q^{15} + 29 q^{16} + 22 q^{17} + 5 q^{18} - q^{19} - 2 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(399))S_{2}^{\mathrm{new}}(\Gamma_0(399)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 3 7 19
399.2.a.a 399.a 1.a 11 3.1863.186 Q\Q None 399.2.a.a 1-1 1-1 00 11 ++ - - SU(2)\mathrm{SU}(2) qq2q3q4+q6+q7+3q8+q-q^{2}-q^{3}-q^{4}+q^{6}+q^{7}+3q^{8}+\cdots
399.2.a.b 399.a 1.a 11 3.1863.186 Q\Q None 399.2.a.b 1-1 11 44 1-1 - ++ ++ SU(2)\mathrm{SU}(2) qq2+q3q4+4q5q6q7+q-q^{2}+q^{3}-q^{4}+4q^{5}-q^{6}-q^{7}+\cdots
399.2.a.c 399.a 1.a 11 3.1863.186 Q\Q None 399.2.a.c 11 1-1 00 1-1 ++ ++ ++ SU(2)\mathrm{SU}(2) q+q2q3q4q6q73q8+q+q^{2}-q^{3}-q^{4}-q^{6}-q^{7}-3q^{8}+\cdots
399.2.a.d 399.a 1.a 33 3.1863.186 3.3.148.1 None 399.2.a.d 11 3-3 44 3-3 ++ ++ - SU(2)\mathrm{SU}(2) q+β1q2q3+(β1+β2)q4+(1+β1+)q5+q+\beta _{1}q^{2}-q^{3}+(\beta _{1}+\beta _{2})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots
399.2.a.e 399.a 1.a 33 3.1863.186 3.3.404.1 None 399.2.a.e 11 33 00 3-3 - ++ ++ SU(2)\mathrm{SU}(2) q+β2q2+q3+(3+β1β2)q4+(β1+)q5+q+\beta _{2}q^{2}+q^{3}+(3+\beta _{1}-\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots
399.2.a.f 399.a 1.a 55 3.1863.186 5.5.1240016.1 None 399.2.a.f 11 55 2-2 55 - - - SU(2)\mathrm{SU}(2) q+β3q2+q3+(1+β4)q4+β2q5+q+\beta _{3}q^{2}+q^{3}+(1+\beta _{4})q^{4}+\beta _{2}q^{5}+\cdots
399.2.a.g 399.a 1.a 55 3.1863.186 5.5.368464.1 None 399.2.a.g 33 5-5 44 55 ++ - ++ SU(2)\mathrm{SU}(2) q+(1β1)q2q3+(2β1+β2)q4+q+(1-\beta _{1})q^{2}-q^{3}+(2-\beta _{1}+\beta _{2})q^{4}+\cdots

Decomposition of S2old(Γ0(399))S_{2}^{\mathrm{old}}(\Gamma_0(399)) into lower level spaces

S2old(Γ0(399)) S_{2}^{\mathrm{old}}(\Gamma_0(399)) \simeq S2new(Γ0(19))S_{2}^{\mathrm{new}}(\Gamma_0(19))4^{\oplus 4}\oplusS2new(Γ0(21))S_{2}^{\mathrm{new}}(\Gamma_0(21))2^{\oplus 2}\oplusS2new(Γ0(57))S_{2}^{\mathrm{new}}(\Gamma_0(57))2^{\oplus 2}\oplusS2new(Γ0(133))S_{2}^{\mathrm{new}}(\Gamma_0(133))2^{\oplus 2}