Defining parameters
Level: | \( N \) | \(=\) | \( 399 = 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 399.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(106\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(399))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 19 | 37 |
Cusp forms | 49 | 19 | 30 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(5\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(5\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(17\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(399))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(399))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(399)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 2}\)