Properties

Label 399.2.bc
Level 399399
Weight 22
Character orbit 399.bc
Rep. character χ399(248,)\chi_{399}(248,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 9696
Newform subspaces 11
Sturm bound 106106
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.bc (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 106106
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(399,[χ])M_{2}(399, [\chi]).

Total New Old
Modular forms 116 96 20
Cusp forms 100 96 4
Eisenstein series 16 0 16

Trace form

96q+48q44q78q912q1030q12+8q1532q162q18+8q2148q22+36q2460q258q2828q30+12q316q3316q3616q39+24q99+O(q100) 96 q + 48 q^{4} - 4 q^{7} - 8 q^{9} - 12 q^{10} - 30 q^{12} + 8 q^{15} - 32 q^{16} - 2 q^{18} + 8 q^{21} - 48 q^{22} + 36 q^{24} - 60 q^{25} - 8 q^{28} - 28 q^{30} + 12 q^{31} - 6 q^{33} - 16 q^{36} - 16 q^{39}+ \cdots - 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
399.2.bc.a 399.bc 21.g 9696 3.1863.186 None 399.2.bc.a 00 00 00 4-4 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S2old(399,[χ])S_{2}^{\mathrm{old}}(399, [\chi]) into lower level spaces

S2old(399,[χ]) S_{2}^{\mathrm{old}}(399, [\chi]) \simeq S2new(21,[χ])S_{2}^{\mathrm{new}}(21, [\chi])2^{\oplus 2}