Properties

Label 399.2.bd
Level 399399
Weight 22
Character orbit 399.bd
Rep. character χ399(68,)\chi_{399}(68,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 100100
Newform subspaces 33
Sturm bound 106106
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.bd (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 399 399
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 3 3
Sturm bound: 106106
Trace bound: 77
Distinguishing TpT_p: 22, 1313

Dimensions

The following table gives the dimensions of various subspaces of M2(399,[χ])M_{2}(399, [\chi]).

Total New Old
Modular forms 116 116 0
Cusp forms 100 100 0
Eisenstein series 16 16 0

Trace form

100q+50q412q611q72q96q10+3q137q1546q16+10q189q1910q2112q2232q254q28+11q3039q313q3312q34+54q99+O(q100) 100 q + 50 q^{4} - 12 q^{6} - 11 q^{7} - 2 q^{9} - 6 q^{10} + 3 q^{13} - 7 q^{15} - 46 q^{16} + 10 q^{18} - 9 q^{19} - 10 q^{21} - 12 q^{22} - 32 q^{25} - 4 q^{28} + 11 q^{30} - 39 q^{31} - 3 q^{33} - 12 q^{34}+ \cdots - 54 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
399.2.bd.a 399.bd 399.ad 22 3.1863.186 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 399.2.p.a 00 00 00 5-5 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(1+2ζ6)q32ζ6q4+(3+ζ6)q7+q+(-1+2\zeta_{6})q^{3}-2\zeta_{6}q^{4}+(-3+\zeta_{6})q^{7}+\cdots
399.2.bd.b 399.bd 399.ad 22 3.1863.186 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 399.2.p.b 00 00 00 44 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(1+2ζ6)q32ζ6q4+(1+2ζ6)q7+q+(-1+2\zeta_{6})q^{3}-2\zeta_{6}q^{4}+(1+2\zeta_{6})q^{7}+\cdots
399.2.bd.c 399.bd 399.ad 9696 3.1863.186 None 399.2.p.c 00 00 00 10-10 SU(2)[C6]\mathrm{SU}(2)[C_{6}]