Properties

Label 399.2.bd
Level $399$
Weight $2$
Character orbit 399.bd
Rep. character $\chi_{399}(68,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $100$
Newform subspaces $3$
Sturm bound $106$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.bd (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 399 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(106\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(399, [\chi])\).

Total New Old
Modular forms 116 116 0
Cusp forms 100 100 0
Eisenstein series 16 16 0

Trace form

\( 100 q + 50 q^{4} - 12 q^{6} - 11 q^{7} - 2 q^{9} + O(q^{10}) \) \( 100 q + 50 q^{4} - 12 q^{6} - 11 q^{7} - 2 q^{9} - 6 q^{10} + 3 q^{13} - 7 q^{15} - 46 q^{16} + 10 q^{18} - 9 q^{19} - 10 q^{21} - 12 q^{22} - 32 q^{25} - 4 q^{28} + 11 q^{30} - 39 q^{31} - 3 q^{33} - 12 q^{34} - 22 q^{36} - 17 q^{37} - 7 q^{39} + 12 q^{40} - 60 q^{42} - 17 q^{43} + 36 q^{45} + 12 q^{46} + 51 q^{48} - 13 q^{49} - 42 q^{51} + 9 q^{54} + 30 q^{55} - 6 q^{57} - 36 q^{58} - 4 q^{60} + 38 q^{63} - 144 q^{64} + 51 q^{66} + 7 q^{67} - 62 q^{70} + 142 q^{72} - 9 q^{75} + 66 q^{76} + 9 q^{78} + 9 q^{79} + 54 q^{81} - 15 q^{84} - 44 q^{85} - 21 q^{87} + 44 q^{88} - 171 q^{90} - 9 q^{91} - 21 q^{93} + 144 q^{94} + 132 q^{96} - 54 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(399, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
399.2.bd.a 399.bd 399.ad $2$ $3.186$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 399.2.p.a \(0\) \(0\) \(0\) \(-5\) $\mathrm{U}(1)[D_{6}]$ \(q+(-1+2\zeta_{6})q^{3}-2\zeta_{6}q^{4}+(-3+\zeta_{6})q^{7}+\cdots\)
399.2.bd.b 399.bd 399.ad $2$ $3.186$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 399.2.p.b \(0\) \(0\) \(0\) \(4\) $\mathrm{U}(1)[D_{6}]$ \(q+(-1+2\zeta_{6})q^{3}-2\zeta_{6}q^{4}+(1+2\zeta_{6})q^{7}+\cdots\)
399.2.bd.c 399.bd 399.ad $96$ $3.186$ None 399.2.p.c \(0\) \(0\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{6}]$