Properties

Label 399.2.bq
Level $399$
Weight $2$
Character orbit 399.bq
Rep. character $\chi_{399}(4,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $162$
Newform subspaces $2$
Sturm bound $106$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.bq (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 2 \)
Sturm bound: \(106\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(399, [\chi])\).

Total New Old
Modular forms 342 162 180
Cusp forms 294 162 132
Eisenstein series 48 0 48

Trace form

\( 162 q + 12 q^{7} + O(q^{10}) \) \( 162 q + 12 q^{7} - 36 q^{10} - 12 q^{11} + 48 q^{12} + 6 q^{13} - 30 q^{14} - 24 q^{17} - 3 q^{19} - 48 q^{20} - 15 q^{21} + 24 q^{23} + 12 q^{25} + 24 q^{26} - 9 q^{27} - 36 q^{28} - 36 q^{29} - 72 q^{31} - 42 q^{32} + 12 q^{34} - 12 q^{37} + 138 q^{38} - 72 q^{40} + 36 q^{41} - 12 q^{42} - 60 q^{43} - 72 q^{44} + 6 q^{45} + 36 q^{46} + 36 q^{47} - 12 q^{49} - 18 q^{50} + 6 q^{52} + 36 q^{53} + 36 q^{56} - 12 q^{57} + 36 q^{58} - 48 q^{59} + 21 q^{61} + 18 q^{62} - 6 q^{63} - 102 q^{64} - 36 q^{65} + 27 q^{67} + 36 q^{68} - 48 q^{69} - 12 q^{70} - 24 q^{71} + 18 q^{72} + 27 q^{73} + 60 q^{74} - 63 q^{75} - 36 q^{76} - 102 q^{77} - 12 q^{78} + 93 q^{79} - 72 q^{80} - 96 q^{82} + 24 q^{83} - 72 q^{84} + 36 q^{85} + 18 q^{86} + 18 q^{90} - 51 q^{91} + 96 q^{92} - 30 q^{93} - 108 q^{94} - 24 q^{95} - 6 q^{97} - 72 q^{98} + 12 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(399, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
399.2.bq.a 399.bq 133.w $72$ $3.186$ None 399.2.bp.a \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{9}]$
399.2.bq.b 399.bq 133.w $90$ $3.186$ None 399.2.bp.b \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(399, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(399, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 2}\)