Properties

Label 399.2.bq
Level 399399
Weight 22
Character orbit 399.bq
Rep. character χ399(4,)\chi_{399}(4,\cdot)
Character field Q(ζ9)\Q(\zeta_{9})
Dimension 162162
Newform subspaces 22
Sturm bound 106106
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.bq (of order 99 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 133 133
Character field: Q(ζ9)\Q(\zeta_{9})
Newform subspaces: 2 2
Sturm bound: 106106
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(399,[χ])M_{2}(399, [\chi]).

Total New Old
Modular forms 342 162 180
Cusp forms 294 162 132
Eisenstein series 48 0 48

Trace form

162q+12q736q1012q11+48q12+6q1330q1424q173q1948q2015q21+24q23+12q25+24q269q2736q2836q2972q31++12q99+O(q100) 162 q + 12 q^{7} - 36 q^{10} - 12 q^{11} + 48 q^{12} + 6 q^{13} - 30 q^{14} - 24 q^{17} - 3 q^{19} - 48 q^{20} - 15 q^{21} + 24 q^{23} + 12 q^{25} + 24 q^{26} - 9 q^{27} - 36 q^{28} - 36 q^{29} - 72 q^{31}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
399.2.bq.a 399.bq 133.w 7272 3.1863.186 None 399.2.bp.a 00 00 00 66 SU(2)[C9]\mathrm{SU}(2)[C_{9}]
399.2.bq.b 399.bq 133.w 9090 3.1863.186 None 399.2.bp.b 00 00 00 66 SU(2)[C9]\mathrm{SU}(2)[C_{9}]

Decomposition of S2old(399,[χ])S_{2}^{\mathrm{old}}(399, [\chi]) into lower level spaces

S2old(399,[χ]) S_{2}^{\mathrm{old}}(399, [\chi]) \simeq S2new(133,[χ])S_{2}^{\mathrm{new}}(133, [\chi])2^{\oplus 2}