Defining parameters
Level: | \( N \) | \(=\) | \( 399 = 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 399.w (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 399 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(106\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(399, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 116 | 0 |
Cusp forms | 100 | 100 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(399, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
399.2.w.a | $2$ | $3.186$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(-3\) | \(0\) | \(1\) | \(q+(-2+\zeta_{6})q^{3}+2\zeta_{6}q^{4}+(-1+3\zeta_{6})q^{7}+\cdots\) |
399.2.w.b | $2$ | $3.186$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(3\) | \(0\) | \(1\) | \(q+(2-\zeta_{6})q^{3}+2\zeta_{6}q^{4}+(-1+3\zeta_{6})q^{7}+\cdots\) |
399.2.w.c | $8$ | $3.186$ | 8.0.3317760000.8 | None | \(0\) | \(0\) | \(0\) | \(-16\) | \(q+\beta _{1}q^{3}+2\beta _{4}q^{4}+\beta _{6}q^{5}+(-1-2\beta _{4}+\cdots)q^{7}+\cdots\) |
399.2.w.d | $88$ | $3.186$ | None | \(0\) | \(0\) | \(0\) | \(12\) |