Properties

Label 4.26.a
Level 44
Weight 2626
Character orbit 4.a
Rep. character χ4(1,)\chi_{4}(1,\cdot)
Character field Q\Q
Dimension 22
Newform subspaces 11
Sturm bound 1313
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4=22 4 = 2^{2}
Weight: k k == 26 26
Character orbit: [χ][\chi] == 4.a (trivial)
Character field: Q\Q
Newform subspaces: 1 1
Sturm bound: 1313
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M26(Γ0(4))M_{26}(\Gamma_0(4)).

Total New Old
Modular forms 14 2 12
Cusp forms 11 2 9
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22Dim
-22

Trace form

2q899640q3399350196q540518462320q7+848785998042q91306289379240q11+32729023492060q13+11 ⁣ ⁣52q15+46 ⁣ ⁣80q17+24 ⁣ ⁣32q19+11 ⁣ ⁣52q21+84 ⁣ ⁣40q99+O(q100) 2 q - 899640 q^{3} - 399350196 q^{5} - 40518462320 q^{7} + 848785998042 q^{9} - 1306289379240 q^{11} + 32729023492060 q^{13} + 11\!\cdots\!52 q^{15} + 46\!\cdots\!80 q^{17} + 24\!\cdots\!32 q^{19} + 11\!\cdots\!52 q^{21}+ \cdots - 84\!\cdots\!40 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S26new(Γ0(4))S_{26}^{\mathrm{new}}(\Gamma_0(4)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2
4.26.a.a 4.a 1.a 22 15.84015.840 Q(358121)\Q(\sqrt{358121}) None 4.26.a.a 00 899640-899640 399350196-399350196 40518462320-40518462320 - SU(2)\mathrm{SU}(2) q+(449820β)q3+(199675098+)q5+q+(-449820-\beta )q^{3}+(-199675098+\cdots)q^{5}+\cdots

Decomposition of S26old(Γ0(4))S_{26}^{\mathrm{old}}(\Gamma_0(4)) into lower level spaces

S26old(Γ0(4)) S_{26}^{\mathrm{old}}(\Gamma_0(4)) \simeq S26new(Γ0(1))S_{26}^{\mathrm{new}}(\Gamma_0(1))3^{\oplus 3}\oplusS26new(Γ0(2))S_{26}^{\mathrm{new}}(\Gamma_0(2))2^{\oplus 2}