Defining parameters
Level: | \( N \) | \(=\) | \( 4 = 2^{2} \) |
Weight: | \( k \) | \(=\) | \( 36 \) |
Character orbit: | \([\chi]\) | \(=\) | 4.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{36}(\Gamma_0(4))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 19 | 3 | 16 |
Cusp forms | 16 | 3 | 13 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(-\) | \(3\) |
Trace form
Decomposition of \(S_{36}^{\mathrm{new}}(\Gamma_0(4))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
4.36.a.a | $3$ | $31.038$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(0\) | \(50908884\) | \(280720890\) | \(-55\!\cdots\!16\) | $-$ | \(q+(16969628+\beta _{1})q^{3}+(93573630+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{36}^{\mathrm{old}}(\Gamma_0(4))\) into lower level spaces
\( S_{36}^{\mathrm{old}}(\Gamma_0(4)) \simeq \) \(S_{36}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{36}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)