Properties

Label 4.36.a
Level $4$
Weight $36$
Character orbit 4.a
Rep. character $\chi_{4}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4 = 2^{2} \)
Weight: \( k \) \(=\) \( 36 \)
Character orbit: \([\chi]\) \(=\) 4.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{36}(\Gamma_0(4))\).

Total New Old
Modular forms 19 3 16
Cusp forms 16 3 13
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)Dim
\(-\)\(3\)

Trace form

\( 3 q + 50908884 q^{3} + 280720890 q^{5} - 5549296289016 q^{7} - 41\!\cdots\!13 q^{9} - 42\!\cdots\!60 q^{11} - 73\!\cdots\!74 q^{13} + 35\!\cdots\!60 q^{15} + 61\!\cdots\!58 q^{17} - 35\!\cdots\!48 q^{19}+ \cdots + 91\!\cdots\!60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{36}^{\mathrm{new}}(\Gamma_0(4))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
4.36.a.a 4.a 1.a $3$ $31.038$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 4.36.a.a \(0\) \(50908884\) \(280720890\) \(-55\!\cdots\!16\) $-$ $\mathrm{SU}(2)$ \(q+(16969628+\beta _{1})q^{3}+(93573630+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{36}^{\mathrm{old}}(\Gamma_0(4))\) into lower level spaces

\( S_{36}^{\mathrm{old}}(\Gamma_0(4)) \simeq \) \(S_{36}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{36}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)