Defining parameters
Level: | \( N \) | \(=\) | \( 4 = 2^{2} \) |
Weight: | \( k \) | \(=\) | \( 45 \) |
Character orbit: | \([\chi]\) | \(=\) | 4.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(22\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{45}(4, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 23 | 23 | 0 |
Cusp forms | 21 | 21 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{45}^{\mathrm{new}}(4, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
4.45.b.a | $1$ | $49.048$ | \(\Q\) | \(\Q(\sqrt{-1}) \) | \(-4194304\) | \(0\) | \(94\!\cdots\!86\) | \(0\) | \(q-2^{22}q^{2}+2^{44}q^{4}+94681488501586q^{5}+\cdots\) |
4.45.b.b | $20$ | $49.048$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(4799916\) | \(0\) | \(-12\!\cdots\!00\) | \(0\) | \(q+(239996+\beta _{1})q^{2}+(86+431\beta _{1}+\cdots)q^{3}+\cdots\) |