Properties

Label 4.45.b
Level $4$
Weight $45$
Character orbit 4.b
Rep. character $\chi_{4}(3,\cdot)$
Character field $\Q$
Dimension $21$
Newform subspaces $2$
Sturm bound $22$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4 = 2^{2} \)
Weight: \( k \) \(=\) \( 45 \)
Character orbit: \([\chi]\) \(=\) 4.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(22\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{45}(4, [\chi])\).

Total New Old
Modular forms 23 23 0
Cusp forms 21 21 0
Eisenstein series 2 2 0

Trace form

\( 21 q + 605612 q^{2} - 13046580445680 q^{4} - 11\!\cdots\!14 q^{5} - 15\!\cdots\!24 q^{6} + 96\!\cdots\!32 q^{8} - 57\!\cdots\!11 q^{9} - 12\!\cdots\!44 q^{10} - 10\!\cdots\!80 q^{12} - 34\!\cdots\!26 q^{13}+ \cdots - 10\!\cdots\!48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{45}^{\mathrm{new}}(4, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4.45.b.a 4.b 4.b $1$ $49.048$ \(\Q\) \(\Q(\sqrt{-1}) \) 4.45.b.a \(-4194304\) \(0\) \(94\!\cdots\!86\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2^{22}q^{2}+2^{44}q^{4}+94681488501586q^{5}+\cdots\)
4.45.b.b 4.b 4.b $20$ $49.048$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 4.45.b.b \(4799916\) \(0\) \(-12\!\cdots\!00\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(239996+\beta _{1})q^{2}+(86+431\beta _{1}+\cdots)q^{3}+\cdots\)