Properties

Label 4.45.b
Level 44
Weight 4545
Character orbit 4.b
Rep. character χ4(3,)\chi_{4}(3,\cdot)
Character field Q\Q
Dimension 2121
Newform subspaces 22
Sturm bound 2222
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4=22 4 = 2^{2}
Weight: k k == 45 45
Character orbit: [χ][\chi] == 4.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 4 4
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 2222
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M45(4,[χ])M_{45}(4, [\chi]).

Total New Old
Modular forms 23 23 0
Cusp forms 21 21 0
Eisenstein series 2 2 0

Trace form

21q+605612q213046580445680q411 ⁣ ⁣14q515 ⁣ ⁣24q6+96 ⁣ ⁣32q857 ⁣ ⁣11q912 ⁣ ⁣44q1010 ⁣ ⁣80q1234 ⁣ ⁣26q13+10 ⁣ ⁣48q98+O(q100) 21 q + 605612 q^{2} - 13046580445680 q^{4} - 11\!\cdots\!14 q^{5} - 15\!\cdots\!24 q^{6} + 96\!\cdots\!32 q^{8} - 57\!\cdots\!11 q^{9} - 12\!\cdots\!44 q^{10} - 10\!\cdots\!80 q^{12} - 34\!\cdots\!26 q^{13}+ \cdots - 10\!\cdots\!48 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S45new(4,[χ])S_{45}^{\mathrm{new}}(4, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
4.45.b.a 4.b 4.b 11 49.04849.048 Q\Q Q(1)\Q(\sqrt{-1}) 4.45.b.a 4194304-4194304 00 94 ⁣ ⁣8694\!\cdots\!86 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q222q2+244q4+94681488501586q5+q-2^{22}q^{2}+2^{44}q^{4}+94681488501586q^{5}+\cdots
4.45.b.b 4.b 4.b 2020 49.04849.048 Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots) None 4.45.b.b 47999164799916 00 12 ⁣ ⁣00-12\!\cdots\!00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(239996+β1)q2+(86+431β1+)q3+q+(239996+\beta _{1})q^{2}+(86+431\beta _{1}+\cdots)q^{3}+\cdots