Properties

Label 40.6.a
Level 4040
Weight 66
Character orbit 40.a
Rep. character χ40(1,)\chi_{40}(1,\cdot)
Character field Q\Q
Dimension 55
Newform subspaces 44
Sturm bound 3636
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 40=235 40 = 2^{3} \cdot 5
Weight: k k == 6 6
Character orbit: [χ][\chi] == 40.a (trivial)
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 3636
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ0(40))M_{6}(\Gamma_0(40)).

Total New Old
Modular forms 34 5 29
Cusp forms 26 5 21
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

2255FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++881177661155220022
++--992277772255220022
-++-991188771166220022
--++881177661155220022
Plus space++16162214141212221010440044
Minus space-18183315151414331111440044

Trace form

5q40q3+25q5+124q7+281q9+468q11+222q13+1578q173132q19584q21+1076q23+3125q255920q27+3446q29+2392q3116240q33++443012q99+O(q100) 5 q - 40 q^{3} + 25 q^{5} + 124 q^{7} + 281 q^{9} + 468 q^{11} + 222 q^{13} + 1578 q^{17} - 3132 q^{19} - 584 q^{21} + 1076 q^{23} + 3125 q^{25} - 5920 q^{27} + 3446 q^{29} + 2392 q^{31} - 16240 q^{33}+ \cdots + 443012 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ0(40))S_{6}^{\mathrm{new}}(\Gamma_0(40)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 5
40.6.a.a 40.a 1.a 11 6.4156.415 Q\Q None 40.6.a.a 00 18-18 25-25 242242 - ++ SU(2)\mathrm{SU}(2) q18q352q5+242q7+34q9+q-18q^{3}-5^{2}q^{5}+242q^{7}+3^{4}q^{9}+\cdots
40.6.a.b 40.a 1.a 11 6.4156.415 Q\Q None 40.6.a.b 00 8-8 2525 108-108 - - SU(2)\mathrm{SU}(2) q8q3+52q5108q7179q9+q-8q^{3}+5^{2}q^{5}-108q^{7}-179q^{9}+\cdots
40.6.a.c 40.a 1.a 11 6.4156.415 Q\Q None 40.6.a.c 00 2-2 25-25 62-62 ++ ++ SU(2)\mathrm{SU}(2) q2q352q562q7239q9+q-2q^{3}-5^{2}q^{5}-62q^{7}-239q^{9}+\cdots
40.6.a.d 40.a 1.a 22 6.4156.415 Q(129)\Q(\sqrt{129}) None 40.6.a.d 00 12-12 5050 5252 ++ - SU(2)\mathrm{SU}(2) q+(6β)q3+52q5+(263β)q7+q+(-6-\beta )q^{3}+5^{2}q^{5}+(26-3\beta )q^{7}+\cdots

Decomposition of S6old(Γ0(40))S_{6}^{\mathrm{old}}(\Gamma_0(40)) into lower level spaces

S6old(Γ0(40)) S_{6}^{\mathrm{old}}(\Gamma_0(40)) \simeq S6new(Γ0(4))S_{6}^{\mathrm{new}}(\Gamma_0(4))4^{\oplus 4}\oplusS6new(Γ0(5))S_{6}^{\mathrm{new}}(\Gamma_0(5))4^{\oplus 4}\oplusS6new(Γ0(8))S_{6}^{\mathrm{new}}(\Gamma_0(8))2^{\oplus 2}\oplusS6new(Γ0(10))S_{6}^{\mathrm{new}}(\Gamma_0(10))3^{\oplus 3}\oplusS6new(Γ0(20))S_{6}^{\mathrm{new}}(\Gamma_0(20))2^{\oplus 2}