Defining parameters
Level: | \( N \) | \(=\) | \( 40 = 2^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 40.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(40))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 5 | 29 |
Cusp forms | 26 | 5 | 21 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(40))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
40.6.a.a | $1$ | $6.415$ | \(\Q\) | None | \(0\) | \(-18\) | \(-25\) | \(242\) | $-$ | $+$ | \(q-18q^{3}-5^{2}q^{5}+242q^{7}+3^{4}q^{9}+\cdots\) | |
40.6.a.b | $1$ | $6.415$ | \(\Q\) | None | \(0\) | \(-8\) | \(25\) | \(-108\) | $-$ | $-$ | \(q-8q^{3}+5^{2}q^{5}-108q^{7}-179q^{9}+\cdots\) | |
40.6.a.c | $1$ | $6.415$ | \(\Q\) | None | \(0\) | \(-2\) | \(-25\) | \(-62\) | $+$ | $+$ | \(q-2q^{3}-5^{2}q^{5}-62q^{7}-239q^{9}+\cdots\) | |
40.6.a.d | $2$ | $6.415$ | \(\Q(\sqrt{129}) \) | None | \(0\) | \(-12\) | \(50\) | \(52\) | $+$ | $-$ | \(q+(-6-\beta )q^{3}+5^{2}q^{5}+(26-3\beta )q^{7}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(40))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(40)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)