Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M6(Γ0(40)).
|
Total |
New |
Old |
Modular forms
| 34 |
5 |
29 |
Cusp forms
| 26 |
5 |
21 |
Eisenstein series
| 8 |
0 |
8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 5 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 8 | 1 | 7 | | 6 | 1 | 5 | | 2 | 0 | 2 |
+ | − | − | | 9 | 2 | 7 | | 7 | 2 | 5 | | 2 | 0 | 2 |
− | + | − | | 9 | 1 | 8 | | 7 | 1 | 6 | | 2 | 0 | 2 |
− | − | + | | 8 | 1 | 7 | | 6 | 1 | 5 | | 2 | 0 | 2 |
Plus space | + | | 16 | 2 | 14 | | 12 | 2 | 10 | | 4 | 0 | 4 |
Minus space | − | | 18 | 3 | 15 | | 14 | 3 | 11 | | 4 | 0 | 4 |
Decomposition of S6new(Γ0(40)) into newform subspaces
Decomposition of S6old(Γ0(40)) into lower level spaces