Properties

Label 40.6.c
Level 4040
Weight 66
Character orbit 40.c
Rep. character χ40(9,)\chi_{40}(9,\cdot)
Character field Q\Q
Dimension 88
Newform subspaces 11
Sturm bound 3636
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 40=235 40 = 2^{3} \cdot 5
Weight: k k == 6 6
Character orbit: [χ][\chi] == 40.c (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 1 1
Sturm bound: 3636
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M6(40,[χ])M_{6}(40, [\chi]).

Total New Old
Modular forms 34 8 26
Cusp forms 26 8 18
Eisenstein series 8 0 8

Trace form

8q+8q51000q9736q11992q15+1376q19+1984q212136q25+5872q29+4224q31+19232q353008q39+23600q4128328q4545000q49124800q51++266848q99+O(q100) 8 q + 8 q^{5} - 1000 q^{9} - 736 q^{11} - 992 q^{15} + 1376 q^{19} + 1984 q^{21} - 2136 q^{25} + 5872 q^{29} + 4224 q^{31} + 19232 q^{35} - 3008 q^{39} + 23600 q^{41} - 28328 q^{45} - 45000 q^{49} - 124800 q^{51}+ \cdots + 266848 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(40,[χ])S_{6}^{\mathrm{new}}(40, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
40.6.c.a 40.c 5.b 88 6.4156.415 Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots) None 40.6.c.a 00 00 88 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q3+(1β2)q5+(β2+β6)q7+q-\beta _{1}q^{3}+(1-\beta _{2})q^{5}+(\beta _{2}+\beta _{6})q^{7}+\cdots

Decomposition of S6old(40,[χ])S_{6}^{\mathrm{old}}(40, [\chi]) into lower level spaces

S6old(40,[χ]) S_{6}^{\mathrm{old}}(40, [\chi]) \simeq S6new(5,[χ])S_{6}^{\mathrm{new}}(5, [\chi])4^{\oplus 4}\oplusS6new(10,[χ])S_{6}^{\mathrm{new}}(10, [\chi])3^{\oplus 3}\oplusS6new(20,[χ])S_{6}^{\mathrm{new}}(20, [\chi])2^{\oplus 2}