Defining parameters
Level: | \( N \) | \(=\) | \( 40 = 2^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 40.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(40, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 8 | 26 |
Cusp forms | 26 | 8 | 18 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(40, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
40.6.c.a | $8$ | $6.415$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q-\beta _{1}q^{3}+(1-\beta _{2})q^{5}+(\beta _{2}+\beta _{6})q^{7}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(40, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(40, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)