Properties

Label 400.1
Level 400
Weight 1
Dimension 5
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 9600
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(9600\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(400))\).

Total New Old
Modular forms 419 97 322
Cusp forms 27 5 22
Eisenstein series 392 92 300

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 5 0 0 0

Trace form

\( 5 q + q^{5} + 2 q^{9} + O(q^{10}) \) \( 5 q + q^{5} + 2 q^{9} - q^{25} - 4 q^{29} - 5 q^{37} - q^{45} - 3 q^{49} - 5 q^{53} - 5 q^{65} + 5 q^{85} + q^{89} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(400))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
400.1.b \(\chi_{400}(351, \cdot)\) 400.1.b.a 1 1
400.1.e \(\chi_{400}(199, \cdot)\) None 0 1
400.1.g \(\chi_{400}(151, \cdot)\) None 0 1
400.1.h \(\chi_{400}(399, \cdot)\) None 0 1
400.1.i \(\chi_{400}(93, \cdot)\) None 0 2
400.1.k \(\chi_{400}(99, \cdot)\) None 0 2
400.1.m \(\chi_{400}(57, \cdot)\) None 0 2
400.1.p \(\chi_{400}(193, \cdot)\) None 0 2
400.1.r \(\chi_{400}(51, \cdot)\) None 0 2
400.1.t \(\chi_{400}(157, \cdot)\) None 0 2
400.1.v \(\chi_{400}(71, \cdot)\) None 0 4
400.1.x \(\chi_{400}(79, \cdot)\) 400.1.x.a 4 4
400.1.z \(\chi_{400}(31, \cdot)\) None 0 4
400.1.ba \(\chi_{400}(39, \cdot)\) None 0 4
400.1.bc \(\chi_{400}(53, \cdot)\) None 0 8
400.1.bf \(\chi_{400}(19, \cdot)\) None 0 8
400.1.bg \(\chi_{400}(17, \cdot)\) None 0 8
400.1.bj \(\chi_{400}(73, \cdot)\) None 0 8
400.1.bk \(\chi_{400}(11, \cdot)\) None 0 8
400.1.bn \(\chi_{400}(13, \cdot)\) None 0 8

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(400))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(400)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(400))\)\(^{\oplus 1}\)