Properties

Label 400.3.bk
Level $400$
Weight $3$
Character orbit 400.bk
Rep. character $\chi_{400}(11,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $944$
Newform subspaces $1$
Sturm bound $180$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 400.bk (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 400 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(180\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(400, [\chi])\).

Total New Old
Modular forms 976 976 0
Cusp forms 944 944 0
Eisenstein series 32 32 0

Trace form

\( 944 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 8 q^{5} - 6 q^{6} - 32 q^{7} + 12 q^{8} - 26 q^{10} - 6 q^{11} - 54 q^{12} - 6 q^{13} - 30 q^{14} - 6 q^{16} - 12 q^{17} - 32 q^{18} - 6 q^{19} + 34 q^{20} - 60 q^{21}+ \cdots - 304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
400.3.bk.a 400.bk 400.ak $944$ $10.899$ None 400.3.bk.a \(-6\) \(-6\) \(-8\) \(-32\) $\mathrm{SU}(2)[C_{20}]$