Properties

Label 400.6
Level 400
Weight 6
Dimension 12350
Nonzero newspaces 14
Sturm bound 57600
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 14 \)
Sturm bound: \(57600\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(400))\).

Total New Old
Modular forms 24392 12535 11857
Cusp forms 23608 12350 11258
Eisenstein series 784 185 599

Trace form

\( 12350 q - 26 q^{2} - 28 q^{3} - 48 q^{4} - 40 q^{5} + 72 q^{6} + 94 q^{7} + 220 q^{8} + 56 q^{9} - 32 q^{10} - 1300 q^{11} - 20 q^{12} + 516 q^{13} - 124 q^{14} - 2892 q^{15} - 912 q^{16} + 954 q^{17} - 3162 q^{18}+ \cdots - 2738474 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(400))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
400.6.a \(\chi_{400}(1, \cdot)\) 400.6.a.a 1 1
400.6.a.b 1
400.6.a.c 1
400.6.a.d 1
400.6.a.e 1
400.6.a.f 1
400.6.a.g 1
400.6.a.h 1
400.6.a.i 1
400.6.a.j 1
400.6.a.k 1
400.6.a.l 1
400.6.a.m 1
400.6.a.n 1
400.6.a.o 2
400.6.a.p 2
400.6.a.q 2
400.6.a.r 2
400.6.a.s 2
400.6.a.t 2
400.6.a.u 2
400.6.a.v 2
400.6.a.w 2
400.6.a.x 3
400.6.a.y 3
400.6.a.z 4
400.6.a.ba 4
400.6.c \(\chi_{400}(49, \cdot)\) 400.6.c.a 2 1
400.6.c.b 2
400.6.c.c 2
400.6.c.d 2
400.6.c.e 2
400.6.c.f 2
400.6.c.g 2
400.6.c.h 2
400.6.c.i 2
400.6.c.j 2
400.6.c.k 2
400.6.c.l 4
400.6.c.m 4
400.6.c.n 4
400.6.c.o 4
400.6.c.p 6
400.6.d \(\chi_{400}(201, \cdot)\) None 0 1
400.6.f \(\chi_{400}(249, \cdot)\) None 0 1
400.6.j \(\chi_{400}(43, \cdot)\) n/a 356 2
400.6.l \(\chi_{400}(101, \cdot)\) n/a 374 2
400.6.n \(\chi_{400}(143, \cdot)\) 400.6.n.a 2 2
400.6.n.b 4
400.6.n.c 4
400.6.n.d 4
400.6.n.e 16
400.6.n.f 16
400.6.n.g 20
400.6.n.h 24
400.6.o \(\chi_{400}(7, \cdot)\) None 0 2
400.6.q \(\chi_{400}(149, \cdot)\) n/a 356 2
400.6.s \(\chi_{400}(107, \cdot)\) n/a 356 2
400.6.u \(\chi_{400}(81, \cdot)\) n/a 296 4
400.6.w \(\chi_{400}(9, \cdot)\) None 0 4
400.6.y \(\chi_{400}(129, \cdot)\) n/a 296 4
400.6.bb \(\chi_{400}(41, \cdot)\) None 0 4
400.6.bd \(\chi_{400}(3, \cdot)\) n/a 2384 8
400.6.be \(\chi_{400}(21, \cdot)\) n/a 2384 8
400.6.bh \(\chi_{400}(23, \cdot)\) None 0 8
400.6.bi \(\chi_{400}(47, \cdot)\) n/a 600 8
400.6.bl \(\chi_{400}(29, \cdot)\) n/a 2384 8
400.6.bm \(\chi_{400}(67, \cdot)\) n/a 2384 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(400))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(400)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(400))\)\(^{\oplus 1}\)