Properties

Label 4001.2.a.a.1.97
Level 40014001
Weight 22
Character 4001.1
Self dual yes
Analytic conductor 31.94831.948
Analytic rank 11
Dimension 149149
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4001,2,Mod(1,4001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 4001 4001
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [149] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 31.948145848731.9481458487
Analytic rank: 11
Dimension: 149149
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.97
Character χ\chi == 4001.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.949299q22.99427q31.09883q40.667150q52.84246q63.07808q72.94172q8+5.96565q90.633324q10+0.288414q11+3.29020q125.99437q132.92202q14+1.99763q150.594904q16+2.27154q17+5.66318q18+6.30951q19+0.733085q20+9.21660q21+0.273791q22+6.81467q23+8.80829q244.55491q255.69045q268.87995q27+3.38229q28+3.07356q29+1.89634q305.87852q31+5.31869q320.863589q33+2.15637q34+2.05354q356.55525q36+8.77473q37+5.98961q38+17.9488q39+1.96257q402.99493q41+8.74931q42+3.17439q430.316918q443.97998q45+6.46915q46+2.56978q47+1.78130q48+2.47458q494.32397q506.80162q51+6.58681q52+10.2849q538.42973q540.192415q55+9.05484q5618.8924q57+2.91772q5812.9026q592.19505q6011.7728q615.58047q6218.3627q63+6.23884q64+3.99914q650.819804q66+7.70025q672.49605q6820.4049q69+1.94942q703.96848q7117.5493q72+10.9683q73+8.32984q74+13.6386q756.93310q760.887761q77+17.0387q78+2.13603q79+0.396890q80+8.69202q812.84309q826.40009q8310.1275q841.51546q85+3.01344q869.20306q870.848432q88+1.99471q893.77819q90+18.4512q917.48817q92+17.6019q93+2.43949q944.20939q9515.9256q96+17.5603q97+2.34911q98+1.72058q99+O(q100)q+0.949299 q^{2} -2.99427 q^{3} -1.09883 q^{4} -0.667150 q^{5} -2.84246 q^{6} -3.07808 q^{7} -2.94172 q^{8} +5.96565 q^{9} -0.633324 q^{10} +0.288414 q^{11} +3.29020 q^{12} -5.99437 q^{13} -2.92202 q^{14} +1.99763 q^{15} -0.594904 q^{16} +2.27154 q^{17} +5.66318 q^{18} +6.30951 q^{19} +0.733085 q^{20} +9.21660 q^{21} +0.273791 q^{22} +6.81467 q^{23} +8.80829 q^{24} -4.55491 q^{25} -5.69045 q^{26} -8.87995 q^{27} +3.38229 q^{28} +3.07356 q^{29} +1.89634 q^{30} -5.87852 q^{31} +5.31869 q^{32} -0.863589 q^{33} +2.15637 q^{34} +2.05354 q^{35} -6.55525 q^{36} +8.77473 q^{37} +5.98961 q^{38} +17.9488 q^{39} +1.96257 q^{40} -2.99493 q^{41} +8.74931 q^{42} +3.17439 q^{43} -0.316918 q^{44} -3.97998 q^{45} +6.46915 q^{46} +2.56978 q^{47} +1.78130 q^{48} +2.47458 q^{49} -4.32397 q^{50} -6.80162 q^{51} +6.58681 q^{52} +10.2849 q^{53} -8.42973 q^{54} -0.192415 q^{55} +9.05484 q^{56} -18.8924 q^{57} +2.91772 q^{58} -12.9026 q^{59} -2.19505 q^{60} -11.7728 q^{61} -5.58047 q^{62} -18.3627 q^{63} +6.23884 q^{64} +3.99914 q^{65} -0.819804 q^{66} +7.70025 q^{67} -2.49605 q^{68} -20.4049 q^{69} +1.94942 q^{70} -3.96848 q^{71} -17.5493 q^{72} +10.9683 q^{73} +8.32984 q^{74} +13.6386 q^{75} -6.93310 q^{76} -0.887761 q^{77} +17.0387 q^{78} +2.13603 q^{79} +0.396890 q^{80} +8.69202 q^{81} -2.84309 q^{82} -6.40009 q^{83} -10.1275 q^{84} -1.51546 q^{85} +3.01344 q^{86} -9.20306 q^{87} -0.848432 q^{88} +1.99471 q^{89} -3.77819 q^{90} +18.4512 q^{91} -7.48817 q^{92} +17.6019 q^{93} +2.43949 q^{94} -4.20939 q^{95} -15.9256 q^{96} +17.5603 q^{97} +2.34911 q^{98} +1.72058 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 149q6q228q3+116q419q531q647q715q8+115q948q1031q1161q1254q1344q1465q15+58q1626q1723q18+131q99+O(q100) 149 q - 6 q^{2} - 28 q^{3} + 116 q^{4} - 19 q^{5} - 31 q^{6} - 47 q^{7} - 15 q^{8} + 115 q^{9} - 48 q^{10} - 31 q^{11} - 61 q^{12} - 54 q^{13} - 44 q^{14} - 65 q^{15} + 58 q^{16} - 26 q^{17} - 23 q^{18}+ \cdots - 131 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.949299 0.671256 0.335628 0.941995i 0.391052π-0.391052\pi
0.335628 + 0.941995i 0.391052π0.391052\pi
33 −2.99427 −1.72874 −0.864371 0.502854i 0.832283π-0.832283\pi
−0.864371 + 0.502854i 0.832283π0.832283\pi
44 −1.09883 −0.549416
55 −0.667150 −0.298358 −0.149179 0.988810i 0.547663π-0.547663\pi
−0.149179 + 0.988810i 0.547663π0.547663\pi
66 −2.84246 −1.16043
77 −3.07808 −1.16340 −0.581702 0.813402i 0.697613π-0.697613\pi
−0.581702 + 0.813402i 0.697613π0.697613\pi
88 −2.94172 −1.04005
99 5.96565 1.98855
1010 −0.633324 −0.200275
1111 0.288414 0.0869601 0.0434800 0.999054i 0.486156π-0.486156\pi
0.0434800 + 0.999054i 0.486156π0.486156\pi
1212 3.29020 0.949799
1313 −5.99437 −1.66254 −0.831270 0.555869i 0.812386π-0.812386\pi
−0.831270 + 0.555869i 0.812386π0.812386\pi
1414 −2.92202 −0.780942
1515 1.99763 0.515785
1616 −0.594904 −0.148726
1717 2.27154 0.550931 0.275465 0.961311i 0.411168π-0.411168\pi
0.275465 + 0.961311i 0.411168π0.411168\pi
1818 5.66318 1.33482
1919 6.30951 1.44750 0.723751 0.690061i 0.242416π-0.242416\pi
0.723751 + 0.690061i 0.242416π0.242416\pi
2020 0.733085 0.163923
2121 9.21660 2.01123
2222 0.273791 0.0583724
2323 6.81467 1.42096 0.710478 0.703719i 0.248479π-0.248479\pi
0.710478 + 0.703719i 0.248479π0.248479\pi
2424 8.80829 1.79799
2525 −4.55491 −0.910982
2626 −5.69045 −1.11599
2727 −8.87995 −1.70895
2828 3.38229 0.639193
2929 3.07356 0.570745 0.285373 0.958417i 0.407883π-0.407883\pi
0.285373 + 0.958417i 0.407883π0.407883\pi
3030 1.89634 0.346223
3131 −5.87852 −1.05581 −0.527906 0.849303i 0.677023π-0.677023\pi
−0.527906 + 0.849303i 0.677023π0.677023\pi
3232 5.31869 0.940221
3333 −0.863589 −0.150332
3434 2.15637 0.369815
3535 2.05354 0.347112
3636 −6.55525 −1.09254
3737 8.77473 1.44256 0.721279 0.692645i 0.243555π-0.243555\pi
0.721279 + 0.692645i 0.243555π0.243555\pi
3838 5.98961 0.971644
3939 17.9488 2.87410
4040 1.96257 0.310309
4141 −2.99493 −0.467730 −0.233865 0.972269i 0.575137π-0.575137\pi
−0.233865 + 0.972269i 0.575137π0.575137\pi
4242 8.74931 1.35005
4343 3.17439 0.484090 0.242045 0.970265i 0.422182π-0.422182\pi
0.242045 + 0.970265i 0.422182π0.422182\pi
4444 −0.316918 −0.0477773
4545 −3.97998 −0.593300
4646 6.46915 0.953825
4747 2.56978 0.374841 0.187420 0.982280i 0.439987π-0.439987\pi
0.187420 + 0.982280i 0.439987π0.439987\pi
4848 1.78130 0.257109
4949 2.47458 0.353511
5050 −4.32397 −0.611502
5151 −6.80162 −0.952417
5252 6.58681 0.913426
5353 10.2849 1.41274 0.706372 0.707840i 0.250330π-0.250330\pi
0.706372 + 0.707840i 0.250330π0.250330\pi
5454 −8.42973 −1.14714
5555 −0.192415 −0.0259453
5656 9.05484 1.21000
5757 −18.8924 −2.50236
5858 2.91772 0.383116
5959 −12.9026 −1.67978 −0.839888 0.542760i 0.817379π-0.817379\pi
−0.839888 + 0.542760i 0.817379π0.817379\pi
6060 −2.19505 −0.283380
6161 −11.7728 −1.50735 −0.753675 0.657247i 0.771721π-0.771721\pi
−0.753675 + 0.657247i 0.771721π0.771721\pi
6262 −5.58047 −0.708720
6363 −18.3627 −2.31349
6464 6.23884 0.779854
6565 3.99914 0.496033
6666 −0.819804 −0.100911
6767 7.70025 0.940736 0.470368 0.882470i 0.344121π-0.344121\pi
0.470368 + 0.882470i 0.344121π0.344121\pi
6868 −2.49605 −0.302690
6969 −20.4049 −2.45647
7070 1.94942 0.233001
7171 −3.96848 −0.470972 −0.235486 0.971878i 0.575668π-0.575668\pi
−0.235486 + 0.971878i 0.575668π0.575668\pi
7272 −17.5493 −2.06820
7373 10.9683 1.28374 0.641872 0.766812i 0.278158π-0.278158\pi
0.641872 + 0.766812i 0.278158π0.278158\pi
7474 8.32984 0.968324
7575 13.6386 1.57485
7676 −6.93310 −0.795281
7777 −0.887761 −0.101170
7878 17.0387 1.92926
7979 2.13603 0.240322 0.120161 0.992754i 0.461659π-0.461659\pi
0.120161 + 0.992754i 0.461659π0.461659\pi
8080 0.396890 0.0443736
8181 8.69202 0.965780
8282 −2.84309 −0.313967
8383 −6.40009 −0.702501 −0.351251 0.936281i 0.614244π-0.614244\pi
−0.351251 + 0.936281i 0.614244π0.614244\pi
8484 −10.1275 −1.10500
8585 −1.51546 −0.164375
8686 3.01344 0.324948
8787 −9.20306 −0.986671
8888 −0.848432 −0.0904432
8989 1.99471 0.211439 0.105719 0.994396i 0.466285π-0.466285\pi
0.105719 + 0.994396i 0.466285π0.466285\pi
9090 −3.77819 −0.398256
9191 18.4512 1.93421
9292 −7.48817 −0.780696
9393 17.6019 1.82523
9494 2.43949 0.251614
9595 −4.20939 −0.431874
9696 −15.9256 −1.62540
9797 17.5603 1.78298 0.891489 0.453042i 0.149661π-0.149661\pi
0.891489 + 0.453042i 0.149661π0.149661\pi
9898 2.34911 0.237296
9999 1.72058 0.172924
100100 5.00508 0.500508
101101 3.56099 0.354332 0.177166 0.984181i 0.443307π-0.443307\pi
0.177166 + 0.984181i 0.443307π0.443307\pi
102102 −6.45677 −0.639315
103103 −9.61458 −0.947353 −0.473676 0.880699i 0.657073π-0.657073\pi
−0.473676 + 0.880699i 0.657073π0.657073\pi
104104 17.6338 1.72913
105105 −6.14885 −0.600066
106106 9.76348 0.948313
107107 −16.2010 −1.56621 −0.783103 0.621893i 0.786364π-0.786364\pi
−0.783103 + 0.621893i 0.786364π0.786364\pi
108108 9.75758 0.938923
109109 9.32186 0.892873 0.446436 0.894815i 0.352693π-0.352693\pi
0.446436 + 0.894815i 0.352693π0.352693\pi
110110 −0.182660 −0.0174159
111111 −26.2739 −2.49381
112112 1.83116 0.173029
113113 4.16028 0.391366 0.195683 0.980667i 0.437308π-0.437308\pi
0.195683 + 0.980667i 0.437308π0.437308\pi
114114 −17.9345 −1.67972
115115 −4.54640 −0.423954
116116 −3.37732 −0.313576
117117 −35.7603 −3.30604
118118 −12.2484 −1.12756
119119 −6.99200 −0.640955
120120 −5.87645 −0.536444
121121 −10.9168 −0.992438
122122 −11.1759 −1.01182
123123 8.96764 0.808585
124124 6.45950 0.580080
125125 6.37455 0.570157
126126 −17.4317 −1.55294
127127 −4.09047 −0.362971 −0.181485 0.983394i 0.558090π-0.558090\pi
−0.181485 + 0.983394i 0.558090π0.558090\pi
128128 −4.71487 −0.416739
129129 −9.50498 −0.836867
130130 3.79638 0.332965
131131 −2.16750 −0.189375 −0.0946876 0.995507i 0.530185π-0.530185\pi
−0.0946876 + 0.995507i 0.530185π0.530185\pi
132132 0.948939 0.0825946
133133 −19.4212 −1.68403
134134 7.30984 0.631474
135135 5.92426 0.509879
136136 −6.68224 −0.572998
137137 8.69615 0.742962 0.371481 0.928441i 0.378850π-0.378850\pi
0.371481 + 0.928441i 0.378850π0.378850\pi
138138 −19.3704 −1.64892
139139 10.4601 0.887217 0.443609 0.896221i 0.353698π-0.353698\pi
0.443609 + 0.896221i 0.353698π0.353698\pi
140140 −2.25649 −0.190709
141141 −7.69461 −0.648003
142142 −3.76727 −0.316142
143143 −1.72886 −0.144575
144144 −3.54899 −0.295749
145145 −2.05052 −0.170287
146146 10.4122 0.861720
147147 −7.40954 −0.611129
148148 −9.64196 −0.792564
149149 −14.0052 −1.14735 −0.573673 0.819084i 0.694482π-0.694482\pi
−0.573673 + 0.819084i 0.694482π0.694482\pi
150150 12.9471 1.05713
151151 −13.0105 −1.05878 −0.529388 0.848380i 0.677578π-0.677578\pi
−0.529388 + 0.848380i 0.677578π0.677578\pi
152152 −18.5608 −1.50548
153153 13.5512 1.09555
154154 −0.842750 −0.0679108
155155 3.92185 0.315011
156156 −19.7227 −1.57908
157157 1.11543 0.0890212 0.0445106 0.999009i 0.485827π-0.485827\pi
0.0445106 + 0.999009i 0.485827π0.485827\pi
158158 2.02773 0.161318
159159 −30.7959 −2.44227
160160 −3.54836 −0.280523
161161 −20.9761 −1.65315
162162 8.25132 0.648285
163163 11.3558 0.889458 0.444729 0.895665i 0.353300π-0.353300\pi
0.444729 + 0.895665i 0.353300π0.353300\pi
164164 3.29093 0.256979
165165 0.576143 0.0448527
166166 −6.07560 −0.471558
167167 −18.6053 −1.43972 −0.719862 0.694117i 0.755795π-0.755795\pi
−0.719862 + 0.694117i 0.755795π0.755795\pi
168168 −27.1126 −2.09178
169169 22.9325 1.76404
170170 −1.43862 −0.110337
171171 37.6403 2.87843
172172 −3.48812 −0.265967
173173 −15.4904 −1.17771 −0.588857 0.808237i 0.700422π-0.700422\pi
−0.588857 + 0.808237i 0.700422π0.700422\pi
174174 −8.73645 −0.662308
175175 14.0204 1.05984
176176 −0.171579 −0.0129332
177177 38.6339 2.90390
178178 1.89357 0.141929
179179 −3.31672 −0.247903 −0.123952 0.992288i 0.539557π-0.539557\pi
−0.123952 + 0.992288i 0.539557π0.539557\pi
180180 4.37333 0.325969
181181 10.6529 0.791824 0.395912 0.918288i 0.370429π-0.370429\pi
0.395912 + 0.918288i 0.370429π0.370429\pi
182182 17.5157 1.29835
183183 35.2509 2.60582
184184 −20.0468 −1.47787
185185 −5.85406 −0.430399
186186 16.7094 1.22519
187187 0.655145 0.0479090
188188 −2.82376 −0.205944
189189 27.3332 1.98820
190190 −3.99597 −0.289898
191191 20.7835 1.50384 0.751920 0.659255i 0.229128π-0.229128\pi
0.751920 + 0.659255i 0.229128π0.229128\pi
192192 −18.6808 −1.34817
193193 −7.72335 −0.555939 −0.277970 0.960590i 0.589661π-0.589661\pi
−0.277970 + 0.960590i 0.589661π0.589661\pi
194194 16.6700 1.19683
195195 −11.9745 −0.857513
196196 −2.71914 −0.194224
197197 −12.2341 −0.871646 −0.435823 0.900032i 0.643543π-0.643543\pi
−0.435823 + 0.900032i 0.643543π0.643543\pi
198198 1.63334 0.116076
199199 −18.0823 −1.28182 −0.640911 0.767615i 0.721443π-0.721443\pi
−0.640911 + 0.767615i 0.721443π0.721443\pi
200200 13.3993 0.947471
201201 −23.0566 −1.62629
202202 3.38045 0.237847
203203 −9.46065 −0.664008
204204 7.47383 0.523273
205205 1.99807 0.139551
206206 −9.12711 −0.635916
207207 40.6539 2.82564
208208 3.56608 0.247263
209209 1.81975 0.125875
210210 −5.83710 −0.402798
211211 −8.07902 −0.556183 −0.278091 0.960555i 0.589702π-0.589702\pi
−0.278091 + 0.960555i 0.589702π0.589702\pi
212212 −11.3014 −0.776185
213213 11.8827 0.814189
214214 −15.3795 −1.05132
215215 −2.11779 −0.144432
216216 26.1223 1.77740
217217 18.0945 1.22834
218218 8.84923 0.599346
219219 −32.8421 −2.21926
220220 0.211432 0.0142547
221221 −13.6165 −0.915944
222222 −24.9418 −1.67398
223223 3.98485 0.266846 0.133423 0.991059i 0.457403π-0.457403\pi
0.133423 + 0.991059i 0.457403π0.457403\pi
224224 −16.3714 −1.09386
225225 −27.1730 −1.81153
226226 3.94935 0.262707
227227 4.13251 0.274285 0.137142 0.990551i 0.456208π-0.456208\pi
0.137142 + 0.990551i 0.456208π0.456208\pi
228228 20.7596 1.37484
229229 9.69108 0.640405 0.320202 0.947349i 0.396249π-0.396249\pi
0.320202 + 0.947349i 0.396249π0.396249\pi
230230 −4.31589 −0.284582
231231 2.65820 0.174896
232232 −9.04153 −0.593606
233233 6.89362 0.451616 0.225808 0.974172i 0.427498π-0.427498\pi
0.225808 + 0.974172i 0.427498π0.427498\pi
234234 −33.9472 −2.21920
235235 −1.71443 −0.111837
236236 14.1778 0.922895
237237 −6.39585 −0.415455
238238 −6.63749 −0.430245
239239 4.00494 0.259058 0.129529 0.991576i 0.458653π-0.458653\pi
0.129529 + 0.991576i 0.458653π0.458653\pi
240240 −1.18840 −0.0767106
241241 0.924588 0.0595579 0.0297790 0.999557i 0.490520π-0.490520\pi
0.0297790 + 0.999557i 0.490520π0.490520\pi
242242 −10.3633 −0.666179
243243 0.613604 0.0393627
244244 12.9363 0.828162
245245 −1.65091 −0.105473
246246 8.51297 0.542767
247247 −37.8216 −2.40653
248248 17.2929 1.09810
249249 19.1636 1.21444
250250 6.05136 0.382721
251251 −2.09681 −0.132349 −0.0661747 0.997808i 0.521079π-0.521079\pi
−0.0661747 + 0.997808i 0.521079π0.521079\pi
252252 20.1776 1.27107
253253 1.96544 0.123566
254254 −3.88308 −0.243646
255255 4.53770 0.284162
256256 −16.9535 −1.05959
257257 −15.1769 −0.946709 −0.473354 0.880872i 0.656957π-0.656957\pi
−0.473354 + 0.880872i 0.656957π0.656957\pi
258258 −9.02306 −0.561751
259259 −27.0093 −1.67828
260260 −4.39439 −0.272528
261261 18.3358 1.13495
262262 −2.05760 −0.127119
263263 6.31579 0.389448 0.194724 0.980858i 0.437619π-0.437619\pi
0.194724 + 0.980858i 0.437619π0.437619\pi
264264 2.54043 0.156353
265265 −6.86159 −0.421504
266266 −18.4365 −1.13041
267267 −5.97270 −0.365523
268268 −8.46128 −0.516855
269269 −20.2336 −1.23366 −0.616831 0.787095i 0.711584π-0.711584\pi
−0.616831 + 0.787095i 0.711584π0.711584\pi
270270 5.62389 0.342259
271271 −15.0503 −0.914239 −0.457119 0.889405i 0.651119π-0.651119\pi
−0.457119 + 0.889405i 0.651119π0.651119\pi
272272 −1.35135 −0.0819377
273273 −55.2478 −3.34375
274274 8.25524 0.498717
275275 −1.31370 −0.0792191
276276 22.4216 1.34962
277277 −5.06323 −0.304220 −0.152110 0.988364i 0.548607π-0.548607\pi
−0.152110 + 0.988364i 0.548607π0.548607\pi
278278 9.92979 0.595549
279279 −35.0692 −2.09954
280280 −6.04093 −0.361015
281281 25.2268 1.50491 0.752453 0.658646i 0.228871π-0.228871\pi
0.752453 + 0.658646i 0.228871π0.228871\pi
282282 −7.30449 −0.434976
283283 32.4361 1.92812 0.964062 0.265676i 0.0855951π-0.0855951\pi
0.964062 + 0.265676i 0.0855951π0.0855951\pi
284284 4.36069 0.258759
285285 12.6040 0.746599
286286 −1.64121 −0.0970465
287287 9.21865 0.544160
288288 31.7295 1.86968
289289 −11.8401 −0.696476
290290 −1.94656 −0.114306
291291 −52.5803 −3.08231
292292 −12.0523 −0.705309
293293 3.66746 0.214255 0.107128 0.994245i 0.465835π-0.465835\pi
0.107128 + 0.994245i 0.465835π0.465835\pi
294294 −7.03387 −0.410224
295295 8.60796 0.501175
296296 −25.8128 −1.50034
297297 −2.56110 −0.148610
298298 −13.2951 −0.770163
299299 −40.8497 −2.36240
300300 −14.9866 −0.865250
301301 −9.77103 −0.563193
302302 −12.3508 −0.710709
303303 −10.6626 −0.612549
304304 −3.75356 −0.215281
305305 7.85420 0.449730
306306 12.8642 0.735396
307307 −18.8090 −1.07349 −0.536744 0.843745i 0.680346π-0.680346\pi
−0.536744 + 0.843745i 0.680346π0.680346\pi
308308 0.975500 0.0555843
309309 28.7886 1.63773
310310 3.72301 0.211453
311311 −20.9685 −1.18901 −0.594506 0.804091i 0.702652π-0.702652\pi
−0.594506 + 0.804091i 0.702652π0.702652\pi
312312 −52.8002 −2.98922
313313 −3.97427 −0.224639 −0.112320 0.993672i 0.535828π-0.535828\pi
−0.112320 + 0.993672i 0.535828π0.535828\pi
314314 1.05888 0.0597560
315315 12.2507 0.690248
316316 −2.34714 −0.132037
317317 14.4399 0.811023 0.405512 0.914090i 0.367093π-0.367093\pi
0.405512 + 0.914090i 0.367093π0.367093\pi
318318 −29.2345 −1.63939
319319 0.886456 0.0496320
320320 −4.16224 −0.232676
321321 48.5100 2.70757
322322 −19.9126 −1.10968
323323 14.3323 0.797473
324324 −9.55107 −0.530615
325325 27.3038 1.51454
326326 10.7801 0.597053
327327 −27.9122 −1.54355
328328 8.81025 0.486465
329329 −7.90999 −0.436092
330330 0.546932 0.0301076
331331 −17.3964 −0.956194 −0.478097 0.878307i 0.658673π-0.658673\pi
−0.478097 + 0.878307i 0.658673π0.658673\pi
332332 7.03263 0.385966
333333 52.3470 2.86860
334334 −17.6620 −0.966423
335335 −5.13722 −0.280676
336336 −5.48299 −0.299122
337337 −6.87024 −0.374246 −0.187123 0.982337i 0.559916π-0.559916\pi
−0.187123 + 0.982337i 0.559916π0.559916\pi
338338 21.7698 1.18412
339339 −12.4570 −0.676571
340340 1.66524 0.0903101
341341 −1.69545 −0.0918136
342342 35.7319 1.93216
343343 13.9296 0.752129
344344 −9.33816 −0.503480
345345 13.6131 0.732907
346346 −14.7050 −0.790547
347347 20.8859 1.12122 0.560608 0.828082i 0.310568π-0.310568\pi
0.560608 + 0.828082i 0.310568π0.310568\pi
348348 10.1126 0.542093
349349 18.3965 0.984742 0.492371 0.870385i 0.336130π-0.336130\pi
0.492371 + 0.870385i 0.336130π0.336130\pi
350350 13.3095 0.711424
351351 53.2298 2.84119
352352 1.53399 0.0817617
353353 14.9429 0.795332 0.397666 0.917530i 0.369820π-0.369820\pi
0.397666 + 0.917530i 0.369820π0.369820\pi
354354 36.6751 1.94926
355355 2.64757 0.140518
356356 −2.19185 −0.116168
357357 20.9359 1.10805
358358 −3.14856 −0.166406
359359 −24.4973 −1.29292 −0.646459 0.762949i 0.723751π-0.723751\pi
−0.646459 + 0.762949i 0.723751π0.723751\pi
360360 11.7080 0.617064
361361 20.8100 1.09526
362362 10.1128 0.531516
363363 32.6879 1.71567
364364 −20.2747 −1.06268
365365 −7.31750 −0.383016
366366 33.4636 1.74917
367367 21.2000 1.10663 0.553315 0.832972i 0.313363π-0.313363\pi
0.553315 + 0.832972i 0.313363π0.313363\pi
368368 −4.05407 −0.211333
369369 −17.8667 −0.930105
370370 −5.55725 −0.288908
371371 −31.6579 −1.64359
372372 −19.3415 −1.00281
373373 −12.8273 −0.664173 −0.332086 0.943249i 0.607753π-0.607753\pi
−0.332086 + 0.943249i 0.607753π0.607753\pi
374374 0.621928 0.0321592
375375 −19.0871 −0.985655
376376 −7.55957 −0.389855
377377 −18.4240 −0.948887
378378 25.9474 1.33459
379379 −33.3475 −1.71295 −0.856474 0.516190i 0.827350π-0.827350\pi
−0.856474 + 0.516190i 0.827350π0.827350\pi
380380 4.62541 0.237279
381381 12.2480 0.627482
382382 19.7297 1.00946
383383 −21.6700 −1.10729 −0.553643 0.832754i 0.686763π-0.686763\pi
−0.553643 + 0.832754i 0.686763π0.686763\pi
384384 14.1176 0.720435
385385 0.592269 0.0301848
386386 −7.33177 −0.373177
387387 18.9373 0.962637
388388 −19.2958 −0.979597
389389 5.95864 0.302115 0.151057 0.988525i 0.451732π-0.451732\pi
0.151057 + 0.988525i 0.451732π0.451732\pi
390390 −11.3674 −0.575610
391391 15.4798 0.782848
392392 −7.27950 −0.367670
393393 6.49008 0.327381
394394 −11.6138 −0.585097
395395 −1.42505 −0.0717021
396396 −1.89062 −0.0950075
397397 6.50375 0.326414 0.163207 0.986592i 0.447816π-0.447816\pi
0.163207 + 0.986592i 0.447816π0.447816\pi
398398 −17.1655 −0.860431
399399 58.1523 2.91125
400400 2.70974 0.135487
401401 8.78076 0.438490 0.219245 0.975670i 0.429641π-0.429641\pi
0.219245 + 0.975670i 0.429641π0.429641\pi
402402 −21.8876 −1.09166
403403 35.2380 1.75533
404404 −3.91293 −0.194676
405405 −5.79888 −0.288149
406406 −8.98098 −0.445719
407407 2.53076 0.125445
408408 20.0084 0.990565
409409 24.5031 1.21160 0.605801 0.795616i 0.292853π-0.292853\pi
0.605801 + 0.795616i 0.292853π0.292853\pi
410410 1.89676 0.0936745
411411 −26.0386 −1.28439
412412 10.5648 0.520491
413413 39.7152 1.95426
414414 38.5927 1.89673
415415 4.26982 0.209597
416416 −31.8822 −1.56316
417417 −31.3205 −1.53377
418418 1.72749 0.0844942
419419 −13.8345 −0.675858 −0.337929 0.941172i 0.609726π-0.609726\pi
−0.337929 + 0.941172i 0.609726π0.609726\pi
420420 6.75655 0.329686
421421 −24.4425 −1.19126 −0.595628 0.803260i 0.703097π-0.703097\pi
−0.595628 + 0.803260i 0.703097π0.703097\pi
422422 −7.66941 −0.373341
423423 15.3304 0.745390
424424 −30.2554 −1.46933
425425 −10.3467 −0.501888
426426 11.2802 0.546529
427427 36.2376 1.75366
428428 17.8021 0.860498
429429 5.17668 0.249932
430430 −2.01042 −0.0969510
431431 −14.3605 −0.691719 −0.345859 0.938286i 0.612413π-0.612413\pi
−0.345859 + 0.938286i 0.612413π0.612413\pi
432432 5.28272 0.254165
433433 30.7162 1.47613 0.738064 0.674730i 0.235740π-0.235740\pi
0.738064 + 0.674730i 0.235740π0.235740\pi
434434 17.1771 0.824528
435435 6.13981 0.294382
436436 −10.2432 −0.490558
437437 42.9972 2.05684
438438 −31.1769 −1.48969
439439 38.3939 1.83244 0.916220 0.400677i 0.131225π-0.131225\pi
0.916220 + 0.400677i 0.131225π0.131225\pi
440440 0.566031 0.0269845
441441 14.7624 0.702974
442442 −12.9261 −0.614833
443443 −8.05318 −0.382618 −0.191309 0.981530i 0.561273π-0.561273\pi
−0.191309 + 0.981530i 0.561273π0.561273\pi
444444 28.8706 1.37014
445445 −1.33077 −0.0630845
446446 3.78282 0.179122
447447 41.9352 1.98347
448448 −19.2036 −0.907286
449449 4.42158 0.208667 0.104334 0.994542i 0.466729π-0.466729\pi
0.104334 + 0.994542i 0.466729π0.466729\pi
450450 −25.7953 −1.21600
451451 −0.863781 −0.0406739
452452 −4.57145 −0.215023
453453 38.9568 1.83035
454454 3.92299 0.184115
455455 −12.3097 −0.577087
456456 55.5761 2.60259
457457 −5.79600 −0.271125 −0.135563 0.990769i 0.543284π-0.543284\pi
−0.135563 + 0.990769i 0.543284π0.543284\pi
458458 9.19973 0.429875
459459 −20.1712 −0.941511
460460 4.99573 0.232927
461461 35.6802 1.66179 0.830897 0.556427i 0.187828π-0.187828\pi
0.830897 + 0.556427i 0.187828π0.187828\pi
462462 2.52342 0.117400
463463 −14.6522 −0.680948 −0.340474 0.940254i 0.610587π-0.610587\pi
−0.340474 + 0.940254i 0.610587π0.610587\pi
464464 −1.82847 −0.0848846
465465 −11.7431 −0.544572
466466 6.54410 0.303150
467467 3.11058 0.143940 0.0719702 0.997407i 0.477071π-0.477071\pi
0.0719702 + 0.997407i 0.477071π0.477071\pi
468468 39.2946 1.81639
469469 −23.7020 −1.09446
470470 −1.62750 −0.0750712
471471 −3.33990 −0.153895
472472 37.9558 1.74706
473473 0.915538 0.0420965
474474 −6.07157 −0.278877
475475 −28.7393 −1.31865
476476 7.68303 0.352151
477477 61.3563 2.80931
478478 3.80189 0.173894
479479 −10.6551 −0.486842 −0.243421 0.969921i 0.578270π-0.578270\pi
−0.243421 + 0.969921i 0.578270π0.578270\pi
480480 10.6248 0.484952
481481 −52.5990 −2.39831
482482 0.877710 0.0399786
483483 62.8081 2.85787
484484 11.9957 0.545261
485485 −11.7153 −0.531966
486486 0.582494 0.0264224
487487 22.4545 1.01751 0.508755 0.860912i 0.330106π-0.330106\pi
0.508755 + 0.860912i 0.330106π0.330106\pi
488488 34.6322 1.56773
489489 −34.0024 −1.53764
490490 −1.56721 −0.0707993
491491 29.7991 1.34481 0.672407 0.740182i 0.265261π-0.265261\pi
0.672407 + 0.740182i 0.265261π0.265261\pi
492492 −9.85393 −0.444250
493493 6.98172 0.314441
494494 −35.9040 −1.61540
495495 −1.14788 −0.0515934
496496 3.49715 0.157027
497497 12.2153 0.547931
498498 18.1920 0.815202
499499 −38.2751 −1.71343 −0.856715 0.515789i 0.827499π-0.827499\pi
−0.856715 + 0.515789i 0.827499π0.827499\pi
500500 −7.00456 −0.313254
501501 55.7094 2.48891
502502 −1.99050 −0.0888403
503503 −38.3471 −1.70981 −0.854907 0.518781i 0.826386π-0.826386\pi
−0.854907 + 0.518781i 0.826386π0.826386\pi
504504 54.0180 2.40615
505505 −2.37571 −0.105718
506506 1.86579 0.0829447
507507 −68.6662 −3.04957
508508 4.49474 0.199422
509509 −12.6993 −0.562889 −0.281444 0.959578i 0.590813π-0.590813\pi
−0.281444 + 0.959578i 0.590813π0.590813\pi
510510 4.30763 0.190745
511511 −33.7613 −1.49351
512512 −6.66419 −0.294518
513513 −56.0282 −2.47370
514514 −14.4074 −0.635484
515515 6.41436 0.282651
516516 10.4444 0.459788
517517 0.741161 0.0325962
518518 −25.6399 −1.12655
519519 46.3825 2.03596
520520 −11.7644 −0.515901
521521 −25.7730 −1.12913 −0.564567 0.825387i 0.690957π-0.690957\pi
−0.564567 + 0.825387i 0.690957π0.690957\pi
522522 17.4061 0.761845
523523 −9.46474 −0.413864 −0.206932 0.978355i 0.566348π-0.566348\pi
−0.206932 + 0.978355i 0.566348π0.566348\pi
524524 2.38172 0.104046
525525 −41.9808 −1.83219
526526 5.99557 0.261419
527527 −13.3533 −0.581679
528528 0.513753 0.0223582
529529 23.4397 1.01912
530530 −6.51370 −0.282937
531531 −76.9724 −3.34032
532532 21.3406 0.925233
533533 17.9528 0.777620
534534 −5.66987 −0.245359
535535 10.8085 0.467290
536536 −22.6520 −0.978416
537537 9.93115 0.428561
538538 −19.2077 −0.828103
539539 0.713702 0.0307413
540540 −6.50976 −0.280136
541541 3.26360 0.140313 0.0701565 0.997536i 0.477650π-0.477650\pi
0.0701565 + 0.997536i 0.477650π0.477650\pi
542542 −14.2872 −0.613688
543543 −31.8977 −1.36886
544544 12.0816 0.517996
545545 −6.21908 −0.266396
546546 −52.4466 −2.24451
547547 32.6353 1.39538 0.697692 0.716398i 0.254210π-0.254210\pi
0.697692 + 0.716398i 0.254210π0.254210\pi
548548 −9.55561 −0.408195
549549 −70.2323 −2.99744
550550 −1.24709 −0.0531763
551551 19.3926 0.826155
552552 60.0256 2.55486
553553 −6.57487 −0.279592
554554 −4.80651 −0.204209
555555 17.5286 0.744049
556556 −11.4939 −0.487451
557557 32.9759 1.39723 0.698617 0.715496i 0.253799π-0.253799\pi
0.698617 + 0.715496i 0.253799π0.253799\pi
558558 −33.2911 −1.40933
559559 −19.0285 −0.804819
560560 −1.22166 −0.0516245
561561 −1.96168 −0.0828222
562562 23.9478 1.01018
563563 9.65745 0.407013 0.203506 0.979074i 0.434766π-0.434766\pi
0.203506 + 0.979074i 0.434766π0.434766\pi
564564 8.45509 0.356023
565565 −2.77553 −0.116767
566566 30.7915 1.29426
567567 −26.7547 −1.12359
568568 11.6741 0.489836
569569 4.99900 0.209569 0.104784 0.994495i 0.466585π-0.466585\pi
0.104784 + 0.994495i 0.466585π0.466585\pi
570570 11.9650 0.501159
571571 −21.0497 −0.880901 −0.440450 0.897777i 0.645181π-0.645181\pi
−0.440450 + 0.897777i 0.645181π0.645181\pi
572572 1.89973 0.0794316
573573 −62.2313 −2.59975
574574 8.75125 0.365270
575575 −31.0402 −1.29447
576576 37.2187 1.55078
577577 −16.8749 −0.702511 −0.351255 0.936280i 0.614245π-0.614245\pi
−0.351255 + 0.936280i 0.614245π0.614245\pi
578578 −11.2398 −0.467513
579579 23.1258 0.961075
580580 2.25318 0.0935582
581581 19.7000 0.817294
582582 −49.9144 −2.06902
583583 2.96632 0.122852
584584 −32.2657 −1.33516
585585 23.8575 0.986386
586586 3.48151 0.143820
587587 −18.4303 −0.760701 −0.380350 0.924842i 0.624197π-0.624197\pi
−0.380350 + 0.924842i 0.624197π0.624197\pi
588588 8.14185 0.335764
589589 −37.0906 −1.52829
590590 8.17153 0.336416
591591 36.6323 1.50685
592592 −5.22012 −0.214546
593593 12.7872 0.525107 0.262553 0.964917i 0.415435π-0.415435\pi
0.262553 + 0.964917i 0.415435π0.415435\pi
594594 −2.43125 −0.0997554
595595 4.66471 0.191234
596596 15.3893 0.630371
597597 54.1434 2.21594
598598 −38.7785 −1.58577
599599 −25.0885 −1.02509 −0.512544 0.858661i 0.671297π-0.671297\pi
−0.512544 + 0.858661i 0.671297π0.671297\pi
600600 −40.1210 −1.63793
601601 −42.7400 −1.74340 −0.871701 0.490038i 0.836983π-0.836983\pi
−0.871701 + 0.490038i 0.836983π0.836983\pi
602602 −9.27562 −0.378046
603603 45.9370 1.87070
604604 14.2963 0.581708
605605 7.28315 0.296102
606606 −10.1220 −0.411177
607607 −6.18185 −0.250914 −0.125457 0.992099i 0.540040π-0.540040\pi
−0.125457 + 0.992099i 0.540040π0.540040\pi
608608 33.5584 1.36097
609609 28.3277 1.14790
610610 7.45599 0.301884
611611 −15.4042 −0.623188
612612 −14.8905 −0.601914
613613 15.2898 0.617548 0.308774 0.951135i 0.400081π-0.400081\pi
0.308774 + 0.951135i 0.400081π0.400081\pi
614614 −17.8554 −0.720584
615615 −5.98276 −0.241248
616616 2.61154 0.105222
617617 −9.88094 −0.397792 −0.198896 0.980021i 0.563736π-0.563736\pi
−0.198896 + 0.980021i 0.563736π0.563736\pi
618618 27.3290 1.09933
619619 1.38431 0.0556403 0.0278201 0.999613i 0.491143π-0.491143\pi
0.0278201 + 0.999613i 0.491143π0.491143\pi
620620 −4.30945 −0.173072
621621 −60.5139 −2.42834
622622 −19.9053 −0.798131
623623 −6.13987 −0.245989
624624 −10.6778 −0.427454
625625 18.5218 0.740871
626626 −3.77277 −0.150790
627627 −5.44883 −0.217605
628628 −1.22567 −0.0489097
629629 19.9322 0.794749
630630 11.6296 0.463333
631631 −7.16337 −0.285169 −0.142585 0.989783i 0.545541π-0.545541\pi
−0.142585 + 0.989783i 0.545541π0.545541\pi
632632 −6.28360 −0.249948
633633 24.1908 0.961497
634634 13.7077 0.544404
635635 2.72896 0.108295
636636 33.8395 1.34182
637637 −14.8335 −0.587726
638638 0.841512 0.0333158
639639 −23.6745 −0.936551
640640 3.14552 0.124338
641641 7.86465 0.310635 0.155318 0.987865i 0.450360π-0.450360\pi
0.155318 + 0.987865i 0.450360π0.450360\pi
642642 46.0505 1.81747
643643 −6.74667 −0.266063 −0.133031 0.991112i 0.542471π-0.542471\pi
−0.133031 + 0.991112i 0.542471π0.542471\pi
644644 23.0492 0.908266
645645 6.34124 0.249686
646646 13.6057 0.535308
647647 −37.2971 −1.46630 −0.733151 0.680066i 0.761951π-0.761951\pi
−0.733151 + 0.680066i 0.761951π0.761951\pi
648648 −25.5695 −1.00446
649649 −3.72129 −0.146073
650650 25.9195 1.01665
651651 −54.1799 −2.12348
652652 −12.4782 −0.488682
653653 1.44423 0.0565169 0.0282585 0.999601i 0.491004π-0.491004\pi
0.0282585 + 0.999601i 0.491004π0.491004\pi
654654 −26.4970 −1.03611
655655 1.44605 0.0565017
656656 1.78170 0.0695637
657657 65.4331 2.55279
658658 −7.50894 −0.292729
659659 29.4506 1.14723 0.573616 0.819124i 0.305540π-0.305540\pi
0.573616 + 0.819124i 0.305540π0.305540\pi
660660 −0.633084 −0.0246428
661661 36.3427 1.41357 0.706783 0.707431i 0.250146π-0.250146\pi
0.706783 + 0.707431i 0.250146π0.250146\pi
662662 −16.5144 −0.641851
663663 40.7714 1.58343
664664 18.8273 0.730640
665665 12.9568 0.502445
666666 49.6929 1.92556
667667 20.9453 0.811004
668668 20.4441 0.791008
669669 −11.9317 −0.461307
670670 −4.87676 −0.188406
671671 −3.39543 −0.131079
672672 49.0203 1.89100
673673 −35.3331 −1.36199 −0.680995 0.732288i 0.738453π-0.738453\pi
−0.680995 + 0.732288i 0.738453π0.738453\pi
674674 −6.52191 −0.251215
675675 40.4474 1.55682
676676 −25.1990 −0.969192
677677 51.4884 1.97886 0.989430 0.145011i 0.0463216π-0.0463216\pi
0.989430 + 0.145011i 0.0463216π0.0463216\pi
678678 −11.8254 −0.454152
679679 −54.0520 −2.07433
680680 4.45805 0.170959
681681 −12.3739 −0.474167
682682 −1.60948 −0.0616304
683683 −24.5921 −0.940990 −0.470495 0.882403i 0.655925π-0.655925\pi
−0.470495 + 0.882403i 0.655925π0.655925\pi
684684 −41.3604 −1.58146
685685 −5.80163 −0.221669
686686 13.2234 0.504871
687687 −29.0177 −1.10709
688688 −1.88846 −0.0719968
689689 −61.6518 −2.34875
690690 12.9229 0.491968
691691 30.1151 1.14563 0.572816 0.819684i 0.305851π-0.305851\pi
0.572816 + 0.819684i 0.305851π0.305851\pi
692692 17.0214 0.647055
693693 −5.29607 −0.201181
694694 19.8270 0.752622
695695 −6.97847 −0.264709
696696 27.0728 1.02619
697697 −6.80313 −0.257687
698698 17.4638 0.661014
699699 −20.6414 −0.780728
700700 −15.4060 −0.582294
701701 40.9292 1.54588 0.772938 0.634481i 0.218786π-0.218786\pi
0.772938 + 0.634481i 0.218786π0.218786\pi
702702 50.5309 1.90717
703703 55.3643 2.08810
704704 1.79937 0.0678162
705705 5.13346 0.193337
706706 14.1853 0.533871
707707 −10.9610 −0.412232
708708 −42.4521 −1.59545
709709 2.94106 0.110454 0.0552269 0.998474i 0.482412π-0.482412\pi
0.0552269 + 0.998474i 0.482412π0.482412\pi
710710 2.51333 0.0943237
711711 12.7428 0.477893
712712 −5.86787 −0.219908
713713 −40.0601 −1.50026
714714 19.8744 0.743782
715715 1.15341 0.0431351
716716 3.64452 0.136202
717717 −11.9919 −0.447845
718718 −23.2552 −0.867878
719719 26.2380 0.978511 0.489256 0.872140i 0.337268π-0.337268\pi
0.489256 + 0.872140i 0.337268π0.337268\pi
720720 2.36771 0.0882392
721721 29.5944 1.10215
722722 19.7549 0.735200
723723 −2.76846 −0.102960
724724 −11.7058 −0.435041
725725 −13.9998 −0.519939
726726 31.0306 1.15165
727727 −11.1260 −0.412641 −0.206321 0.978484i 0.566149π-0.566149\pi
−0.206321 + 0.978484i 0.566149π0.566149\pi
728728 −54.2781 −2.01168
729729 −27.9134 −1.03383
730730 −6.94650 −0.257101
731731 7.21077 0.266700
732732 −38.7348 −1.43168
733733 −1.05286 −0.0388883 −0.0194442 0.999811i 0.506190π-0.506190\pi
−0.0194442 + 0.999811i 0.506190π0.506190\pi
734734 20.1251 0.742832
735735 4.94327 0.182335
736736 36.2451 1.33601
737737 2.22086 0.0818064
738738 −16.9609 −0.624338
739739 33.5776 1.23517 0.617586 0.786503i 0.288111π-0.288111\pi
0.617586 + 0.786503i 0.288111π0.288111\pi
740740 6.43263 0.236468
741741 113.248 4.16027
742742 −30.0528 −1.10327
743743 −10.2980 −0.377796 −0.188898 0.981997i 0.560491π-0.560491\pi
−0.188898 + 0.981997i 0.560491π0.560491\pi
744744 −51.7797 −1.89834
745745 9.34353 0.342320
746746 −12.1769 −0.445829
747747 −38.1807 −1.39696
748748 −0.719895 −0.0263220
749749 49.8678 1.82213
750750 −18.1194 −0.661627
751751 −32.3794 −1.18154 −0.590770 0.806840i 0.701176π-0.701176\pi
−0.590770 + 0.806840i 0.701176π0.701176\pi
752752 −1.52877 −0.0557486
753753 6.27841 0.228798
754754 −17.4899 −0.636945
755755 8.67992 0.315894
756756 −30.0346 −1.09235
757757 7.52549 0.273518 0.136759 0.990604i 0.456331π-0.456331\pi
0.136759 + 0.990604i 0.456331π0.456331\pi
758758 −31.6568 −1.14983
759759 −5.88507 −0.213615
760760 12.3828 0.449173
761761 −48.3848 −1.75395 −0.876974 0.480539i 0.840441π-0.840441\pi
−0.876974 + 0.480539i 0.840441π0.840441\pi
762762 11.6270 0.421201
763763 −28.6934 −1.03877
764764 −22.8375 −0.826233
765765 −9.04070 −0.326867
766766 −20.5713 −0.743272
767767 77.3430 2.79269
768768 50.7633 1.83176
769769 −3.19139 −0.115085 −0.0575423 0.998343i 0.518326π-0.518326\pi
−0.0575423 + 0.998343i 0.518326π0.518326\pi
770770 0.562241 0.0202617
771771 45.4437 1.63662
772772 8.48667 0.305442
773773 34.1671 1.22890 0.614452 0.788954i 0.289377π-0.289377\pi
0.614452 + 0.788954i 0.289377π0.289377\pi
774774 17.9772 0.646175
775775 26.7761 0.961827
776776 −51.6574 −1.85439
777777 80.8732 2.90131
778778 5.65653 0.202796
779779 −18.8966 −0.677040
780780 13.1580 0.471131
781781 −1.14456 −0.0409557
782782 14.6950 0.525491
783783 −27.2930 −0.975373
784784 −1.47213 −0.0525762
785785 −0.744160 −0.0265602
786786 6.16102 0.219756
787787 53.2293 1.89742 0.948710 0.316148i 0.102390π-0.102390\pi
0.948710 + 0.316148i 0.102390π0.102390\pi
788788 13.4433 0.478896
789789 −18.9112 −0.673255
790790 −1.35280 −0.0481305
791791 −12.8057 −0.455317
792792 −5.06145 −0.179851
793793 70.5705 2.50603
794794 6.17400 0.219107
795795 20.5455 0.728672
796796 19.8695 0.704254
797797 −48.3377 −1.71221 −0.856105 0.516802i 0.827122π-0.827122\pi
−0.856105 + 0.516802i 0.827122π0.827122\pi
798798 55.2039 1.95420
799799 5.83737 0.206511
800800 −24.2262 −0.856525
801801 11.8997 0.420456
802802 8.33556 0.294339
803803 3.16341 0.111634
804804 25.3354 0.893509
805805 13.9942 0.493230
806806 33.4514 1.17828
807807 60.5848 2.13268
808808 −10.4754 −0.368524
809809 −16.7382 −0.588483 −0.294241 0.955731i 0.595067π-0.595067\pi
−0.294241 + 0.955731i 0.595067π0.595067\pi
810810 −5.50487 −0.193421
811811 −6.25111 −0.219506 −0.109753 0.993959i 0.535006π-0.535006\pi
−0.109753 + 0.993959i 0.535006π0.535006\pi
812812 10.3957 0.364816
813813 45.0646 1.58048
814814 2.40244 0.0842056
815815 −7.57604 −0.265377
816816 4.04631 0.141649
817817 20.0289 0.700721
818818 23.2608 0.813294
819819 110.073 3.84627
820820 −2.19554 −0.0766717
821821 −34.6421 −1.20902 −0.604509 0.796598i 0.706631π-0.706631\pi
−0.604509 + 0.796598i 0.706631π0.706631\pi
822822 −24.7184 −0.862154
823823 −3.25767 −0.113555 −0.0567775 0.998387i 0.518083π-0.518083\pi
−0.0567775 + 0.998387i 0.518083π0.518083\pi
824824 28.2834 0.985298
825825 3.93357 0.136949
826826 37.7016 1.31181
827827 −38.9434 −1.35420 −0.677098 0.735893i 0.736763π-0.736763\pi
−0.677098 + 0.735893i 0.736763π0.736763\pi
828828 −44.6718 −1.55245
829829 −21.0658 −0.731646 −0.365823 0.930684i 0.619212π-0.619212\pi
−0.365823 + 0.930684i 0.619212π0.619212\pi
830830 4.05333 0.140693
831831 15.1607 0.525918
832832 −37.3979 −1.29654
833833 5.62111 0.194760
834834 −29.7325 −1.02955
835835 12.4125 0.429554
836836 −1.99960 −0.0691577
837837 52.2009 1.80433
838838 −13.1330 −0.453673
839839 −48.1056 −1.66079 −0.830395 0.557175i 0.811885π-0.811885\pi
−0.830395 + 0.557175i 0.811885π0.811885\pi
840840 18.0882 0.624101
841841 −19.5533 −0.674250
842842 −23.2033 −0.799637
843843 −75.5359 −2.60159
844844 8.87749 0.305576
845845 −15.2994 −0.526316
846846 14.5531 0.500347
847847 33.6028 1.15461
848848 −6.11855 −0.210112
849849 −97.1224 −3.33323
850850 −9.82209 −0.336895
851851 59.7969 2.04981
852852 −13.0571 −0.447328
853853 −47.0803 −1.61200 −0.805999 0.591917i 0.798371π-0.798371\pi
−0.805999 + 0.591917i 0.798371π0.798371\pi
854854 34.4003 1.17715
855855 −25.1117 −0.858803
856856 47.6586 1.62894
857857 12.8105 0.437599 0.218799 0.975770i 0.429786π-0.429786\pi
0.218799 + 0.975770i 0.429786π0.429786\pi
858858 4.91421 0.167768
859859 8.98755 0.306651 0.153326 0.988176i 0.451002π-0.451002\pi
0.153326 + 0.988176i 0.451002π0.451002\pi
860860 2.32710 0.0793534
861861 −27.6031 −0.940712
862862 −13.6324 −0.464320
863863 −23.3426 −0.794591 −0.397296 0.917691i 0.630051π-0.630051\pi
−0.397296 + 0.917691i 0.630051π0.630051\pi
864864 −47.2297 −1.60679
865865 10.3344 0.351381
866866 29.1589 0.990859
867867 35.4524 1.20403
868868 −19.8829 −0.674868
869869 0.616061 0.0208984
870870 5.82852 0.197605
871871 −46.1582 −1.56401
872872 −27.4223 −0.928636
873873 104.759 3.54554
874874 40.8172 1.38066
875875 −19.6214 −0.663324
876876 36.0879 1.21930
877877 −16.5374 −0.558427 −0.279214 0.960229i 0.590074π-0.590074\pi
−0.279214 + 0.960229i 0.590074π0.590074\pi
878878 36.4472 1.23003
879879 −10.9814 −0.370392
880880 0.114469 0.00385874
881881 −44.3221 −1.49325 −0.746626 0.665245i 0.768327π-0.768327\pi
−0.746626 + 0.665245i 0.768327π0.768327\pi
882882 14.0140 0.471875
883883 −24.0672 −0.809925 −0.404963 0.914333i 0.632715π-0.632715\pi
−0.404963 + 0.914333i 0.632715π0.632715\pi
884884 14.9622 0.503234
885885 −25.7746 −0.866402
886886 −7.64487 −0.256834
887887 −48.9903 −1.64493 −0.822466 0.568814i 0.807403π-0.807403\pi
−0.822466 + 0.568814i 0.807403π0.807403\pi
888888 77.2904 2.59370
889889 12.5908 0.422282
890890 −1.26330 −0.0423458
891891 2.50690 0.0839843
892892 −4.37869 −0.146609
893893 16.2141 0.542583
894894 39.8090 1.33141
895895 2.21275 0.0739640
896896 14.5127 0.484836
897897 122.315 4.08398
898898 4.19740 0.140069
899899 −18.0679 −0.602600
900900 29.8586 0.995286
901901 23.3627 0.778324
902902 −0.819986 −0.0273026
903903 29.2571 0.973615
904904 −12.2384 −0.407042
905905 −7.10708 −0.236247
906906 36.9816 1.22863
907907 −32.5622 −1.08121 −0.540605 0.841277i 0.681805π-0.681805\pi
−0.540605 + 0.841277i 0.681805π0.681805\pi
908908 −4.54094 −0.150696
909909 21.2436 0.704607
910910 −11.6856 −0.387373
911911 25.4066 0.841757 0.420879 0.907117i 0.361722π-0.361722\pi
0.420879 + 0.907117i 0.361722π0.361722\pi
912912 11.2392 0.372166
913913 −1.84588 −0.0610896
914914 −5.50213 −0.181994
915915 −23.5176 −0.777468
916916 −10.6489 −0.351849
917917 6.67173 0.220320
918918 −19.1485 −0.631995
919919 −15.3234 −0.505473 −0.252737 0.967535i 0.581331π-0.581331\pi
−0.252737 + 0.967535i 0.581331π0.581331\pi
920920 13.3742 0.440935
921921 56.3193 1.85578
922922 33.8712 1.11549
923923 23.7885 0.783010
924924 −2.92091 −0.0960909
925925 −39.9681 −1.31414
926926 −13.9094 −0.457090
927927 −57.3572 −1.88386
928928 16.3473 0.536626
929929 1.95001 0.0639779 0.0319889 0.999488i 0.489816π-0.489816\pi
0.0319889 + 0.999488i 0.489816π0.489816\pi
930930 −11.1477 −0.365547
931931 15.6134 0.511707
932932 −7.57493 −0.248125
933933 62.7852 2.05549
934934 2.95287 0.0966208
935935 −0.437080 −0.0142940
936936 105.197 3.43846
937937 −32.9330 −1.07587 −0.537937 0.842985i 0.680796π-0.680796\pi
−0.537937 + 0.842985i 0.680796π0.680796\pi
938938 −22.5003 −0.734660
939939 11.9000 0.388343
940940 1.88387 0.0614450
941941 10.7913 0.351788 0.175894 0.984409i 0.443718π-0.443718\pi
0.175894 + 0.984409i 0.443718π0.443718\pi
942942 −3.17057 −0.103303
943943 −20.4095 −0.664624
944944 7.67581 0.249826
945945 −18.2353 −0.593195
946946 0.869119 0.0282575
947947 −21.4727 −0.697768 −0.348884 0.937166i 0.613439π-0.613439\pi
−0.348884 + 0.937166i 0.613439π0.613439\pi
948948 7.02797 0.228258
949949 −65.7482 −2.13428
950950 −27.2822 −0.885150
951951 −43.2368 −1.40205
952952 20.5685 0.666628
953953 24.1400 0.781971 0.390985 0.920397i 0.372134π-0.372134\pi
0.390985 + 0.920397i 0.372134π0.372134\pi
954954 58.2455 1.88577
955955 −13.8657 −0.448683
956956 −4.40076 −0.142331
957957 −2.65429 −0.0858010
958958 −10.1148 −0.326795
959959 −26.7674 −0.864366
960960 12.4629 0.402237
961961 3.55695 0.114740
962962 −49.9322 −1.60988
963963 −96.6492 −3.11448
964964 −1.01597 −0.0327221
965965 5.15263 0.165869
966966 59.6236 1.91836
967967 −15.8818 −0.510723 −0.255361 0.966846i 0.582194π-0.582194\pi
−0.255361 + 0.966846i 0.582194π0.582194\pi
968968 32.1142 1.03219
969969 −42.9149 −1.37863
970970 −11.1214 −0.357085
971971 47.3609 1.51989 0.759943 0.649990i 0.225227π-0.225227\pi
0.759943 + 0.649990i 0.225227π0.225227\pi
972972 −0.674248 −0.0216265
973973 −32.1971 −1.03219
974974 21.3160 0.683009
975975 −81.7551 −2.61826
976976 7.00367 0.224182
977977 −22.5071 −0.720067 −0.360034 0.932939i 0.617235π-0.617235\pi
−0.360034 + 0.932939i 0.617235π0.617235\pi
978978 −32.2785 −1.03215
979979 0.575302 0.0183867
980980 1.81407 0.0579485
981981 55.6110 1.77552
982982 28.2882 0.902714
983983 −40.4311 −1.28955 −0.644777 0.764371i 0.723050π-0.723050\pi
−0.644777 + 0.764371i 0.723050π0.723050\pi
984984 −26.3803 −0.840972
985985 8.16199 0.260063
986986 6.62774 0.211070
987987 23.6846 0.753890
988988 41.5596 1.32219
989989 21.6324 0.687871
990990 −1.08968 −0.0346324
991991 0.865820 0.0275037 0.0137518 0.999905i 0.495623π-0.495623\pi
0.0137518 + 0.999905i 0.495623π0.495623\pi
992992 −31.2660 −0.992697
993993 52.0896 1.65301
994994 11.5960 0.367802
995995 12.0636 0.382443
996996 −21.0576 −0.667235
997997 −56.6100 −1.79286 −0.896429 0.443188i 0.853848π-0.853848\pi
−0.896429 + 0.443188i 0.853848π0.853848\pi
998998 −36.3345 −1.15015
999999 −77.9192 −2.46525
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.a.1.97 149
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.a.1.97 149 1.1 even 1 trivial