Properties

Label 4001.2.a.a.1.97
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $1$
Dimension $149$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(1\)
Dimension: \(149\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.97
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.949299 q^{2} -2.99427 q^{3} -1.09883 q^{4} -0.667150 q^{5} -2.84246 q^{6} -3.07808 q^{7} -2.94172 q^{8} +5.96565 q^{9} -0.633324 q^{10} +0.288414 q^{11} +3.29020 q^{12} -5.99437 q^{13} -2.92202 q^{14} +1.99763 q^{15} -0.594904 q^{16} +2.27154 q^{17} +5.66318 q^{18} +6.30951 q^{19} +0.733085 q^{20} +9.21660 q^{21} +0.273791 q^{22} +6.81467 q^{23} +8.80829 q^{24} -4.55491 q^{25} -5.69045 q^{26} -8.87995 q^{27} +3.38229 q^{28} +3.07356 q^{29} +1.89634 q^{30} -5.87852 q^{31} +5.31869 q^{32} -0.863589 q^{33} +2.15637 q^{34} +2.05354 q^{35} -6.55525 q^{36} +8.77473 q^{37} +5.98961 q^{38} +17.9488 q^{39} +1.96257 q^{40} -2.99493 q^{41} +8.74931 q^{42} +3.17439 q^{43} -0.316918 q^{44} -3.97998 q^{45} +6.46915 q^{46} +2.56978 q^{47} +1.78130 q^{48} +2.47458 q^{49} -4.32397 q^{50} -6.80162 q^{51} +6.58681 q^{52} +10.2849 q^{53} -8.42973 q^{54} -0.192415 q^{55} +9.05484 q^{56} -18.8924 q^{57} +2.91772 q^{58} -12.9026 q^{59} -2.19505 q^{60} -11.7728 q^{61} -5.58047 q^{62} -18.3627 q^{63} +6.23884 q^{64} +3.99914 q^{65} -0.819804 q^{66} +7.70025 q^{67} -2.49605 q^{68} -20.4049 q^{69} +1.94942 q^{70} -3.96848 q^{71} -17.5493 q^{72} +10.9683 q^{73} +8.32984 q^{74} +13.6386 q^{75} -6.93310 q^{76} -0.887761 q^{77} +17.0387 q^{78} +2.13603 q^{79} +0.396890 q^{80} +8.69202 q^{81} -2.84309 q^{82} -6.40009 q^{83} -10.1275 q^{84} -1.51546 q^{85} +3.01344 q^{86} -9.20306 q^{87} -0.848432 q^{88} +1.99471 q^{89} -3.77819 q^{90} +18.4512 q^{91} -7.48817 q^{92} +17.6019 q^{93} +2.43949 q^{94} -4.20939 q^{95} -15.9256 q^{96} +17.5603 q^{97} +2.34911 q^{98} +1.72058 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 149 q - 6 q^{2} - 28 q^{3} + 116 q^{4} - 19 q^{5} - 31 q^{6} - 47 q^{7} - 15 q^{8} + 115 q^{9} - 48 q^{10} - 31 q^{11} - 61 q^{12} - 54 q^{13} - 44 q^{14} - 65 q^{15} + 58 q^{16} - 26 q^{17} - 23 q^{18}+ \cdots - 131 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.949299 0.671256 0.335628 0.941995i \(-0.391052\pi\)
0.335628 + 0.941995i \(0.391052\pi\)
\(3\) −2.99427 −1.72874 −0.864371 0.502854i \(-0.832283\pi\)
−0.864371 + 0.502854i \(0.832283\pi\)
\(4\) −1.09883 −0.549416
\(5\) −0.667150 −0.298358 −0.149179 0.988810i \(-0.547663\pi\)
−0.149179 + 0.988810i \(0.547663\pi\)
\(6\) −2.84246 −1.16043
\(7\) −3.07808 −1.16340 −0.581702 0.813402i \(-0.697613\pi\)
−0.581702 + 0.813402i \(0.697613\pi\)
\(8\) −2.94172 −1.04005
\(9\) 5.96565 1.98855
\(10\) −0.633324 −0.200275
\(11\) 0.288414 0.0869601 0.0434800 0.999054i \(-0.486156\pi\)
0.0434800 + 0.999054i \(0.486156\pi\)
\(12\) 3.29020 0.949799
\(13\) −5.99437 −1.66254 −0.831270 0.555869i \(-0.812386\pi\)
−0.831270 + 0.555869i \(0.812386\pi\)
\(14\) −2.92202 −0.780942
\(15\) 1.99763 0.515785
\(16\) −0.594904 −0.148726
\(17\) 2.27154 0.550931 0.275465 0.961311i \(-0.411168\pi\)
0.275465 + 0.961311i \(0.411168\pi\)
\(18\) 5.66318 1.33482
\(19\) 6.30951 1.44750 0.723751 0.690061i \(-0.242416\pi\)
0.723751 + 0.690061i \(0.242416\pi\)
\(20\) 0.733085 0.163923
\(21\) 9.21660 2.01123
\(22\) 0.273791 0.0583724
\(23\) 6.81467 1.42096 0.710478 0.703719i \(-0.248479\pi\)
0.710478 + 0.703719i \(0.248479\pi\)
\(24\) 8.80829 1.79799
\(25\) −4.55491 −0.910982
\(26\) −5.69045 −1.11599
\(27\) −8.87995 −1.70895
\(28\) 3.38229 0.639193
\(29\) 3.07356 0.570745 0.285373 0.958417i \(-0.407883\pi\)
0.285373 + 0.958417i \(0.407883\pi\)
\(30\) 1.89634 0.346223
\(31\) −5.87852 −1.05581 −0.527906 0.849303i \(-0.677023\pi\)
−0.527906 + 0.849303i \(0.677023\pi\)
\(32\) 5.31869 0.940221
\(33\) −0.863589 −0.150332
\(34\) 2.15637 0.369815
\(35\) 2.05354 0.347112
\(36\) −6.55525 −1.09254
\(37\) 8.77473 1.44256 0.721279 0.692645i \(-0.243555\pi\)
0.721279 + 0.692645i \(0.243555\pi\)
\(38\) 5.98961 0.971644
\(39\) 17.9488 2.87410
\(40\) 1.96257 0.310309
\(41\) −2.99493 −0.467730 −0.233865 0.972269i \(-0.575137\pi\)
−0.233865 + 0.972269i \(0.575137\pi\)
\(42\) 8.74931 1.35005
\(43\) 3.17439 0.484090 0.242045 0.970265i \(-0.422182\pi\)
0.242045 + 0.970265i \(0.422182\pi\)
\(44\) −0.316918 −0.0477773
\(45\) −3.97998 −0.593300
\(46\) 6.46915 0.953825
\(47\) 2.56978 0.374841 0.187420 0.982280i \(-0.439987\pi\)
0.187420 + 0.982280i \(0.439987\pi\)
\(48\) 1.78130 0.257109
\(49\) 2.47458 0.353511
\(50\) −4.32397 −0.611502
\(51\) −6.80162 −0.952417
\(52\) 6.58681 0.913426
\(53\) 10.2849 1.41274 0.706372 0.707840i \(-0.250330\pi\)
0.706372 + 0.707840i \(0.250330\pi\)
\(54\) −8.42973 −1.14714
\(55\) −0.192415 −0.0259453
\(56\) 9.05484 1.21000
\(57\) −18.8924 −2.50236
\(58\) 2.91772 0.383116
\(59\) −12.9026 −1.67978 −0.839888 0.542760i \(-0.817379\pi\)
−0.839888 + 0.542760i \(0.817379\pi\)
\(60\) −2.19505 −0.283380
\(61\) −11.7728 −1.50735 −0.753675 0.657247i \(-0.771721\pi\)
−0.753675 + 0.657247i \(0.771721\pi\)
\(62\) −5.58047 −0.708720
\(63\) −18.3627 −2.31349
\(64\) 6.23884 0.779854
\(65\) 3.99914 0.496033
\(66\) −0.819804 −0.100911
\(67\) 7.70025 0.940736 0.470368 0.882470i \(-0.344121\pi\)
0.470368 + 0.882470i \(0.344121\pi\)
\(68\) −2.49605 −0.302690
\(69\) −20.4049 −2.45647
\(70\) 1.94942 0.233001
\(71\) −3.96848 −0.470972 −0.235486 0.971878i \(-0.575668\pi\)
−0.235486 + 0.971878i \(0.575668\pi\)
\(72\) −17.5493 −2.06820
\(73\) 10.9683 1.28374 0.641872 0.766812i \(-0.278158\pi\)
0.641872 + 0.766812i \(0.278158\pi\)
\(74\) 8.32984 0.968324
\(75\) 13.6386 1.57485
\(76\) −6.93310 −0.795281
\(77\) −0.887761 −0.101170
\(78\) 17.0387 1.92926
\(79\) 2.13603 0.240322 0.120161 0.992754i \(-0.461659\pi\)
0.120161 + 0.992754i \(0.461659\pi\)
\(80\) 0.396890 0.0443736
\(81\) 8.69202 0.965780
\(82\) −2.84309 −0.313967
\(83\) −6.40009 −0.702501 −0.351251 0.936281i \(-0.614244\pi\)
−0.351251 + 0.936281i \(0.614244\pi\)
\(84\) −10.1275 −1.10500
\(85\) −1.51546 −0.164375
\(86\) 3.01344 0.324948
\(87\) −9.20306 −0.986671
\(88\) −0.848432 −0.0904432
\(89\) 1.99471 0.211439 0.105719 0.994396i \(-0.466285\pi\)
0.105719 + 0.994396i \(0.466285\pi\)
\(90\) −3.77819 −0.398256
\(91\) 18.4512 1.93421
\(92\) −7.48817 −0.780696
\(93\) 17.6019 1.82523
\(94\) 2.43949 0.251614
\(95\) −4.20939 −0.431874
\(96\) −15.9256 −1.62540
\(97\) 17.5603 1.78298 0.891489 0.453042i \(-0.149661\pi\)
0.891489 + 0.453042i \(0.149661\pi\)
\(98\) 2.34911 0.237296
\(99\) 1.72058 0.172924
\(100\) 5.00508 0.500508
\(101\) 3.56099 0.354332 0.177166 0.984181i \(-0.443307\pi\)
0.177166 + 0.984181i \(0.443307\pi\)
\(102\) −6.45677 −0.639315
\(103\) −9.61458 −0.947353 −0.473676 0.880699i \(-0.657073\pi\)
−0.473676 + 0.880699i \(0.657073\pi\)
\(104\) 17.6338 1.72913
\(105\) −6.14885 −0.600066
\(106\) 9.76348 0.948313
\(107\) −16.2010 −1.56621 −0.783103 0.621893i \(-0.786364\pi\)
−0.783103 + 0.621893i \(0.786364\pi\)
\(108\) 9.75758 0.938923
\(109\) 9.32186 0.892873 0.446436 0.894815i \(-0.352693\pi\)
0.446436 + 0.894815i \(0.352693\pi\)
\(110\) −0.182660 −0.0174159
\(111\) −26.2739 −2.49381
\(112\) 1.83116 0.173029
\(113\) 4.16028 0.391366 0.195683 0.980667i \(-0.437308\pi\)
0.195683 + 0.980667i \(0.437308\pi\)
\(114\) −17.9345 −1.67972
\(115\) −4.54640 −0.423954
\(116\) −3.37732 −0.313576
\(117\) −35.7603 −3.30604
\(118\) −12.2484 −1.12756
\(119\) −6.99200 −0.640955
\(120\) −5.87645 −0.536444
\(121\) −10.9168 −0.992438
\(122\) −11.1759 −1.01182
\(123\) 8.96764 0.808585
\(124\) 6.45950 0.580080
\(125\) 6.37455 0.570157
\(126\) −17.4317 −1.55294
\(127\) −4.09047 −0.362971 −0.181485 0.983394i \(-0.558090\pi\)
−0.181485 + 0.983394i \(0.558090\pi\)
\(128\) −4.71487 −0.416739
\(129\) −9.50498 −0.836867
\(130\) 3.79638 0.332965
\(131\) −2.16750 −0.189375 −0.0946876 0.995507i \(-0.530185\pi\)
−0.0946876 + 0.995507i \(0.530185\pi\)
\(132\) 0.948939 0.0825946
\(133\) −19.4212 −1.68403
\(134\) 7.30984 0.631474
\(135\) 5.92426 0.509879
\(136\) −6.68224 −0.572998
\(137\) 8.69615 0.742962 0.371481 0.928441i \(-0.378850\pi\)
0.371481 + 0.928441i \(0.378850\pi\)
\(138\) −19.3704 −1.64892
\(139\) 10.4601 0.887217 0.443609 0.896221i \(-0.353698\pi\)
0.443609 + 0.896221i \(0.353698\pi\)
\(140\) −2.25649 −0.190709
\(141\) −7.69461 −0.648003
\(142\) −3.76727 −0.316142
\(143\) −1.72886 −0.144575
\(144\) −3.54899 −0.295749
\(145\) −2.05052 −0.170287
\(146\) 10.4122 0.861720
\(147\) −7.40954 −0.611129
\(148\) −9.64196 −0.792564
\(149\) −14.0052 −1.14735 −0.573673 0.819084i \(-0.694482\pi\)
−0.573673 + 0.819084i \(0.694482\pi\)
\(150\) 12.9471 1.05713
\(151\) −13.0105 −1.05878 −0.529388 0.848380i \(-0.677578\pi\)
−0.529388 + 0.848380i \(0.677578\pi\)
\(152\) −18.5608 −1.50548
\(153\) 13.5512 1.09555
\(154\) −0.842750 −0.0679108
\(155\) 3.92185 0.315011
\(156\) −19.7227 −1.57908
\(157\) 1.11543 0.0890212 0.0445106 0.999009i \(-0.485827\pi\)
0.0445106 + 0.999009i \(0.485827\pi\)
\(158\) 2.02773 0.161318
\(159\) −30.7959 −2.44227
\(160\) −3.54836 −0.280523
\(161\) −20.9761 −1.65315
\(162\) 8.25132 0.648285
\(163\) 11.3558 0.889458 0.444729 0.895665i \(-0.353300\pi\)
0.444729 + 0.895665i \(0.353300\pi\)
\(164\) 3.29093 0.256979
\(165\) 0.576143 0.0448527
\(166\) −6.07560 −0.471558
\(167\) −18.6053 −1.43972 −0.719862 0.694117i \(-0.755795\pi\)
−0.719862 + 0.694117i \(0.755795\pi\)
\(168\) −27.1126 −2.09178
\(169\) 22.9325 1.76404
\(170\) −1.43862 −0.110337
\(171\) 37.6403 2.87843
\(172\) −3.48812 −0.265967
\(173\) −15.4904 −1.17771 −0.588857 0.808237i \(-0.700422\pi\)
−0.588857 + 0.808237i \(0.700422\pi\)
\(174\) −8.73645 −0.662308
\(175\) 14.0204 1.05984
\(176\) −0.171579 −0.0129332
\(177\) 38.6339 2.90390
\(178\) 1.89357 0.141929
\(179\) −3.31672 −0.247903 −0.123952 0.992288i \(-0.539557\pi\)
−0.123952 + 0.992288i \(0.539557\pi\)
\(180\) 4.37333 0.325969
\(181\) 10.6529 0.791824 0.395912 0.918288i \(-0.370429\pi\)
0.395912 + 0.918288i \(0.370429\pi\)
\(182\) 17.5157 1.29835
\(183\) 35.2509 2.60582
\(184\) −20.0468 −1.47787
\(185\) −5.85406 −0.430399
\(186\) 16.7094 1.22519
\(187\) 0.655145 0.0479090
\(188\) −2.82376 −0.205944
\(189\) 27.3332 1.98820
\(190\) −3.99597 −0.289898
\(191\) 20.7835 1.50384 0.751920 0.659255i \(-0.229128\pi\)
0.751920 + 0.659255i \(0.229128\pi\)
\(192\) −18.6808 −1.34817
\(193\) −7.72335 −0.555939 −0.277970 0.960590i \(-0.589661\pi\)
−0.277970 + 0.960590i \(0.589661\pi\)
\(194\) 16.6700 1.19683
\(195\) −11.9745 −0.857513
\(196\) −2.71914 −0.194224
\(197\) −12.2341 −0.871646 −0.435823 0.900032i \(-0.643543\pi\)
−0.435823 + 0.900032i \(0.643543\pi\)
\(198\) 1.63334 0.116076
\(199\) −18.0823 −1.28182 −0.640911 0.767615i \(-0.721443\pi\)
−0.640911 + 0.767615i \(0.721443\pi\)
\(200\) 13.3993 0.947471
\(201\) −23.0566 −1.62629
\(202\) 3.38045 0.237847
\(203\) −9.46065 −0.664008
\(204\) 7.47383 0.523273
\(205\) 1.99807 0.139551
\(206\) −9.12711 −0.635916
\(207\) 40.6539 2.82564
\(208\) 3.56608 0.247263
\(209\) 1.81975 0.125875
\(210\) −5.83710 −0.402798
\(211\) −8.07902 −0.556183 −0.278091 0.960555i \(-0.589702\pi\)
−0.278091 + 0.960555i \(0.589702\pi\)
\(212\) −11.3014 −0.776185
\(213\) 11.8827 0.814189
\(214\) −15.3795 −1.05132
\(215\) −2.11779 −0.144432
\(216\) 26.1223 1.77740
\(217\) 18.0945 1.22834
\(218\) 8.84923 0.599346
\(219\) −32.8421 −2.21926
\(220\) 0.211432 0.0142547
\(221\) −13.6165 −0.915944
\(222\) −24.9418 −1.67398
\(223\) 3.98485 0.266846 0.133423 0.991059i \(-0.457403\pi\)
0.133423 + 0.991059i \(0.457403\pi\)
\(224\) −16.3714 −1.09386
\(225\) −27.1730 −1.81153
\(226\) 3.94935 0.262707
\(227\) 4.13251 0.274285 0.137142 0.990551i \(-0.456208\pi\)
0.137142 + 0.990551i \(0.456208\pi\)
\(228\) 20.7596 1.37484
\(229\) 9.69108 0.640405 0.320202 0.947349i \(-0.396249\pi\)
0.320202 + 0.947349i \(0.396249\pi\)
\(230\) −4.31589 −0.284582
\(231\) 2.65820 0.174896
\(232\) −9.04153 −0.593606
\(233\) 6.89362 0.451616 0.225808 0.974172i \(-0.427498\pi\)
0.225808 + 0.974172i \(0.427498\pi\)
\(234\) −33.9472 −2.21920
\(235\) −1.71443 −0.111837
\(236\) 14.1778 0.922895
\(237\) −6.39585 −0.415455
\(238\) −6.63749 −0.430245
\(239\) 4.00494 0.259058 0.129529 0.991576i \(-0.458653\pi\)
0.129529 + 0.991576i \(0.458653\pi\)
\(240\) −1.18840 −0.0767106
\(241\) 0.924588 0.0595579 0.0297790 0.999557i \(-0.490520\pi\)
0.0297790 + 0.999557i \(0.490520\pi\)
\(242\) −10.3633 −0.666179
\(243\) 0.613604 0.0393627
\(244\) 12.9363 0.828162
\(245\) −1.65091 −0.105473
\(246\) 8.51297 0.542767
\(247\) −37.8216 −2.40653
\(248\) 17.2929 1.09810
\(249\) 19.1636 1.21444
\(250\) 6.05136 0.382721
\(251\) −2.09681 −0.132349 −0.0661747 0.997808i \(-0.521079\pi\)
−0.0661747 + 0.997808i \(0.521079\pi\)
\(252\) 20.1776 1.27107
\(253\) 1.96544 0.123566
\(254\) −3.88308 −0.243646
\(255\) 4.53770 0.284162
\(256\) −16.9535 −1.05959
\(257\) −15.1769 −0.946709 −0.473354 0.880872i \(-0.656957\pi\)
−0.473354 + 0.880872i \(0.656957\pi\)
\(258\) −9.02306 −0.561751
\(259\) −27.0093 −1.67828
\(260\) −4.39439 −0.272528
\(261\) 18.3358 1.13495
\(262\) −2.05760 −0.127119
\(263\) 6.31579 0.389448 0.194724 0.980858i \(-0.437619\pi\)
0.194724 + 0.980858i \(0.437619\pi\)
\(264\) 2.54043 0.156353
\(265\) −6.86159 −0.421504
\(266\) −18.4365 −1.13041
\(267\) −5.97270 −0.365523
\(268\) −8.46128 −0.516855
\(269\) −20.2336 −1.23366 −0.616831 0.787095i \(-0.711584\pi\)
−0.616831 + 0.787095i \(0.711584\pi\)
\(270\) 5.62389 0.342259
\(271\) −15.0503 −0.914239 −0.457119 0.889405i \(-0.651119\pi\)
−0.457119 + 0.889405i \(0.651119\pi\)
\(272\) −1.35135 −0.0819377
\(273\) −55.2478 −3.34375
\(274\) 8.25524 0.498717
\(275\) −1.31370 −0.0792191
\(276\) 22.4216 1.34962
\(277\) −5.06323 −0.304220 −0.152110 0.988364i \(-0.548607\pi\)
−0.152110 + 0.988364i \(0.548607\pi\)
\(278\) 9.92979 0.595549
\(279\) −35.0692 −2.09954
\(280\) −6.04093 −0.361015
\(281\) 25.2268 1.50491 0.752453 0.658646i \(-0.228871\pi\)
0.752453 + 0.658646i \(0.228871\pi\)
\(282\) −7.30449 −0.434976
\(283\) 32.4361 1.92812 0.964062 0.265676i \(-0.0855951\pi\)
0.964062 + 0.265676i \(0.0855951\pi\)
\(284\) 4.36069 0.258759
\(285\) 12.6040 0.746599
\(286\) −1.64121 −0.0970465
\(287\) 9.21865 0.544160
\(288\) 31.7295 1.86968
\(289\) −11.8401 −0.696476
\(290\) −1.94656 −0.114306
\(291\) −52.5803 −3.08231
\(292\) −12.0523 −0.705309
\(293\) 3.66746 0.214255 0.107128 0.994245i \(-0.465835\pi\)
0.107128 + 0.994245i \(0.465835\pi\)
\(294\) −7.03387 −0.410224
\(295\) 8.60796 0.501175
\(296\) −25.8128 −1.50034
\(297\) −2.56110 −0.148610
\(298\) −13.2951 −0.770163
\(299\) −40.8497 −2.36240
\(300\) −14.9866 −0.865250
\(301\) −9.77103 −0.563193
\(302\) −12.3508 −0.710709
\(303\) −10.6626 −0.612549
\(304\) −3.75356 −0.215281
\(305\) 7.85420 0.449730
\(306\) 12.8642 0.735396
\(307\) −18.8090 −1.07349 −0.536744 0.843745i \(-0.680346\pi\)
−0.536744 + 0.843745i \(0.680346\pi\)
\(308\) 0.975500 0.0555843
\(309\) 28.7886 1.63773
\(310\) 3.72301 0.211453
\(311\) −20.9685 −1.18901 −0.594506 0.804091i \(-0.702652\pi\)
−0.594506 + 0.804091i \(0.702652\pi\)
\(312\) −52.8002 −2.98922
\(313\) −3.97427 −0.224639 −0.112320 0.993672i \(-0.535828\pi\)
−0.112320 + 0.993672i \(0.535828\pi\)
\(314\) 1.05888 0.0597560
\(315\) 12.2507 0.690248
\(316\) −2.34714 −0.132037
\(317\) 14.4399 0.811023 0.405512 0.914090i \(-0.367093\pi\)
0.405512 + 0.914090i \(0.367093\pi\)
\(318\) −29.2345 −1.63939
\(319\) 0.886456 0.0496320
\(320\) −4.16224 −0.232676
\(321\) 48.5100 2.70757
\(322\) −19.9126 −1.10968
\(323\) 14.3323 0.797473
\(324\) −9.55107 −0.530615
\(325\) 27.3038 1.51454
\(326\) 10.7801 0.597053
\(327\) −27.9122 −1.54355
\(328\) 8.81025 0.486465
\(329\) −7.90999 −0.436092
\(330\) 0.546932 0.0301076
\(331\) −17.3964 −0.956194 −0.478097 0.878307i \(-0.658673\pi\)
−0.478097 + 0.878307i \(0.658673\pi\)
\(332\) 7.03263 0.385966
\(333\) 52.3470 2.86860
\(334\) −17.6620 −0.966423
\(335\) −5.13722 −0.280676
\(336\) −5.48299 −0.299122
\(337\) −6.87024 −0.374246 −0.187123 0.982337i \(-0.559916\pi\)
−0.187123 + 0.982337i \(0.559916\pi\)
\(338\) 21.7698 1.18412
\(339\) −12.4570 −0.676571
\(340\) 1.66524 0.0903101
\(341\) −1.69545 −0.0918136
\(342\) 35.7319 1.93216
\(343\) 13.9296 0.752129
\(344\) −9.33816 −0.503480
\(345\) 13.6131 0.732907
\(346\) −14.7050 −0.790547
\(347\) 20.8859 1.12122 0.560608 0.828082i \(-0.310568\pi\)
0.560608 + 0.828082i \(0.310568\pi\)
\(348\) 10.1126 0.542093
\(349\) 18.3965 0.984742 0.492371 0.870385i \(-0.336130\pi\)
0.492371 + 0.870385i \(0.336130\pi\)
\(350\) 13.3095 0.711424
\(351\) 53.2298 2.84119
\(352\) 1.53399 0.0817617
\(353\) 14.9429 0.795332 0.397666 0.917530i \(-0.369820\pi\)
0.397666 + 0.917530i \(0.369820\pi\)
\(354\) 36.6751 1.94926
\(355\) 2.64757 0.140518
\(356\) −2.19185 −0.116168
\(357\) 20.9359 1.10805
\(358\) −3.14856 −0.166406
\(359\) −24.4973 −1.29292 −0.646459 0.762949i \(-0.723751\pi\)
−0.646459 + 0.762949i \(0.723751\pi\)
\(360\) 11.7080 0.617064
\(361\) 20.8100 1.09526
\(362\) 10.1128 0.531516
\(363\) 32.6879 1.71567
\(364\) −20.2747 −1.06268
\(365\) −7.31750 −0.383016
\(366\) 33.4636 1.74917
\(367\) 21.2000 1.10663 0.553315 0.832972i \(-0.313363\pi\)
0.553315 + 0.832972i \(0.313363\pi\)
\(368\) −4.05407 −0.211333
\(369\) −17.8667 −0.930105
\(370\) −5.55725 −0.288908
\(371\) −31.6579 −1.64359
\(372\) −19.3415 −1.00281
\(373\) −12.8273 −0.664173 −0.332086 0.943249i \(-0.607753\pi\)
−0.332086 + 0.943249i \(0.607753\pi\)
\(374\) 0.621928 0.0321592
\(375\) −19.0871 −0.985655
\(376\) −7.55957 −0.389855
\(377\) −18.4240 −0.948887
\(378\) 25.9474 1.33459
\(379\) −33.3475 −1.71295 −0.856474 0.516190i \(-0.827350\pi\)
−0.856474 + 0.516190i \(0.827350\pi\)
\(380\) 4.62541 0.237279
\(381\) 12.2480 0.627482
\(382\) 19.7297 1.00946
\(383\) −21.6700 −1.10729 −0.553643 0.832754i \(-0.686763\pi\)
−0.553643 + 0.832754i \(0.686763\pi\)
\(384\) 14.1176 0.720435
\(385\) 0.592269 0.0301848
\(386\) −7.33177 −0.373177
\(387\) 18.9373 0.962637
\(388\) −19.2958 −0.979597
\(389\) 5.95864 0.302115 0.151057 0.988525i \(-0.451732\pi\)
0.151057 + 0.988525i \(0.451732\pi\)
\(390\) −11.3674 −0.575610
\(391\) 15.4798 0.782848
\(392\) −7.27950 −0.367670
\(393\) 6.49008 0.327381
\(394\) −11.6138 −0.585097
\(395\) −1.42505 −0.0717021
\(396\) −1.89062 −0.0950075
\(397\) 6.50375 0.326414 0.163207 0.986592i \(-0.447816\pi\)
0.163207 + 0.986592i \(0.447816\pi\)
\(398\) −17.1655 −0.860431
\(399\) 58.1523 2.91125
\(400\) 2.70974 0.135487
\(401\) 8.78076 0.438490 0.219245 0.975670i \(-0.429641\pi\)
0.219245 + 0.975670i \(0.429641\pi\)
\(402\) −21.8876 −1.09166
\(403\) 35.2380 1.75533
\(404\) −3.91293 −0.194676
\(405\) −5.79888 −0.288149
\(406\) −8.98098 −0.445719
\(407\) 2.53076 0.125445
\(408\) 20.0084 0.990565
\(409\) 24.5031 1.21160 0.605801 0.795616i \(-0.292853\pi\)
0.605801 + 0.795616i \(0.292853\pi\)
\(410\) 1.89676 0.0936745
\(411\) −26.0386 −1.28439
\(412\) 10.5648 0.520491
\(413\) 39.7152 1.95426
\(414\) 38.5927 1.89673
\(415\) 4.26982 0.209597
\(416\) −31.8822 −1.56316
\(417\) −31.3205 −1.53377
\(418\) 1.72749 0.0844942
\(419\) −13.8345 −0.675858 −0.337929 0.941172i \(-0.609726\pi\)
−0.337929 + 0.941172i \(0.609726\pi\)
\(420\) 6.75655 0.329686
\(421\) −24.4425 −1.19126 −0.595628 0.803260i \(-0.703097\pi\)
−0.595628 + 0.803260i \(0.703097\pi\)
\(422\) −7.66941 −0.373341
\(423\) 15.3304 0.745390
\(424\) −30.2554 −1.46933
\(425\) −10.3467 −0.501888
\(426\) 11.2802 0.546529
\(427\) 36.2376 1.75366
\(428\) 17.8021 0.860498
\(429\) 5.17668 0.249932
\(430\) −2.01042 −0.0969510
\(431\) −14.3605 −0.691719 −0.345859 0.938286i \(-0.612413\pi\)
−0.345859 + 0.938286i \(0.612413\pi\)
\(432\) 5.28272 0.254165
\(433\) 30.7162 1.47613 0.738064 0.674730i \(-0.235740\pi\)
0.738064 + 0.674730i \(0.235740\pi\)
\(434\) 17.1771 0.824528
\(435\) 6.13981 0.294382
\(436\) −10.2432 −0.490558
\(437\) 42.9972 2.05684
\(438\) −31.1769 −1.48969
\(439\) 38.3939 1.83244 0.916220 0.400677i \(-0.131225\pi\)
0.916220 + 0.400677i \(0.131225\pi\)
\(440\) 0.566031 0.0269845
\(441\) 14.7624 0.702974
\(442\) −12.9261 −0.614833
\(443\) −8.05318 −0.382618 −0.191309 0.981530i \(-0.561273\pi\)
−0.191309 + 0.981530i \(0.561273\pi\)
\(444\) 28.8706 1.37014
\(445\) −1.33077 −0.0630845
\(446\) 3.78282 0.179122
\(447\) 41.9352 1.98347
\(448\) −19.2036 −0.907286
\(449\) 4.42158 0.208667 0.104334 0.994542i \(-0.466729\pi\)
0.104334 + 0.994542i \(0.466729\pi\)
\(450\) −25.7953 −1.21600
\(451\) −0.863781 −0.0406739
\(452\) −4.57145 −0.215023
\(453\) 38.9568 1.83035
\(454\) 3.92299 0.184115
\(455\) −12.3097 −0.577087
\(456\) 55.5761 2.60259
\(457\) −5.79600 −0.271125 −0.135563 0.990769i \(-0.543284\pi\)
−0.135563 + 0.990769i \(0.543284\pi\)
\(458\) 9.19973 0.429875
\(459\) −20.1712 −0.941511
\(460\) 4.99573 0.232927
\(461\) 35.6802 1.66179 0.830897 0.556427i \(-0.187828\pi\)
0.830897 + 0.556427i \(0.187828\pi\)
\(462\) 2.52342 0.117400
\(463\) −14.6522 −0.680948 −0.340474 0.940254i \(-0.610587\pi\)
−0.340474 + 0.940254i \(0.610587\pi\)
\(464\) −1.82847 −0.0848846
\(465\) −11.7431 −0.544572
\(466\) 6.54410 0.303150
\(467\) 3.11058 0.143940 0.0719702 0.997407i \(-0.477071\pi\)
0.0719702 + 0.997407i \(0.477071\pi\)
\(468\) 39.2946 1.81639
\(469\) −23.7020 −1.09446
\(470\) −1.62750 −0.0750712
\(471\) −3.33990 −0.153895
\(472\) 37.9558 1.74706
\(473\) 0.915538 0.0420965
\(474\) −6.07157 −0.278877
\(475\) −28.7393 −1.31865
\(476\) 7.68303 0.352151
\(477\) 61.3563 2.80931
\(478\) 3.80189 0.173894
\(479\) −10.6551 −0.486842 −0.243421 0.969921i \(-0.578270\pi\)
−0.243421 + 0.969921i \(0.578270\pi\)
\(480\) 10.6248 0.484952
\(481\) −52.5990 −2.39831
\(482\) 0.877710 0.0399786
\(483\) 62.8081 2.85787
\(484\) 11.9957 0.545261
\(485\) −11.7153 −0.531966
\(486\) 0.582494 0.0264224
\(487\) 22.4545 1.01751 0.508755 0.860912i \(-0.330106\pi\)
0.508755 + 0.860912i \(0.330106\pi\)
\(488\) 34.6322 1.56773
\(489\) −34.0024 −1.53764
\(490\) −1.56721 −0.0707993
\(491\) 29.7991 1.34481 0.672407 0.740182i \(-0.265261\pi\)
0.672407 + 0.740182i \(0.265261\pi\)
\(492\) −9.85393 −0.444250
\(493\) 6.98172 0.314441
\(494\) −35.9040 −1.61540
\(495\) −1.14788 −0.0515934
\(496\) 3.49715 0.157027
\(497\) 12.2153 0.547931
\(498\) 18.1920 0.815202
\(499\) −38.2751 −1.71343 −0.856715 0.515789i \(-0.827499\pi\)
−0.856715 + 0.515789i \(0.827499\pi\)
\(500\) −7.00456 −0.313254
\(501\) 55.7094 2.48891
\(502\) −1.99050 −0.0888403
\(503\) −38.3471 −1.70981 −0.854907 0.518781i \(-0.826386\pi\)
−0.854907 + 0.518781i \(0.826386\pi\)
\(504\) 54.0180 2.40615
\(505\) −2.37571 −0.105718
\(506\) 1.86579 0.0829447
\(507\) −68.6662 −3.04957
\(508\) 4.49474 0.199422
\(509\) −12.6993 −0.562889 −0.281444 0.959578i \(-0.590813\pi\)
−0.281444 + 0.959578i \(0.590813\pi\)
\(510\) 4.30763 0.190745
\(511\) −33.7613 −1.49351
\(512\) −6.66419 −0.294518
\(513\) −56.0282 −2.47370
\(514\) −14.4074 −0.635484
\(515\) 6.41436 0.282651
\(516\) 10.4444 0.459788
\(517\) 0.741161 0.0325962
\(518\) −25.6399 −1.12655
\(519\) 46.3825 2.03596
\(520\) −11.7644 −0.515901
\(521\) −25.7730 −1.12913 −0.564567 0.825387i \(-0.690957\pi\)
−0.564567 + 0.825387i \(0.690957\pi\)
\(522\) 17.4061 0.761845
\(523\) −9.46474 −0.413864 −0.206932 0.978355i \(-0.566348\pi\)
−0.206932 + 0.978355i \(0.566348\pi\)
\(524\) 2.38172 0.104046
\(525\) −41.9808 −1.83219
\(526\) 5.99557 0.261419
\(527\) −13.3533 −0.581679
\(528\) 0.513753 0.0223582
\(529\) 23.4397 1.01912
\(530\) −6.51370 −0.282937
\(531\) −76.9724 −3.34032
\(532\) 21.3406 0.925233
\(533\) 17.9528 0.777620
\(534\) −5.66987 −0.245359
\(535\) 10.8085 0.467290
\(536\) −22.6520 −0.978416
\(537\) 9.93115 0.428561
\(538\) −19.2077 −0.828103
\(539\) 0.713702 0.0307413
\(540\) −6.50976 −0.280136
\(541\) 3.26360 0.140313 0.0701565 0.997536i \(-0.477650\pi\)
0.0701565 + 0.997536i \(0.477650\pi\)
\(542\) −14.2872 −0.613688
\(543\) −31.8977 −1.36886
\(544\) 12.0816 0.517996
\(545\) −6.21908 −0.266396
\(546\) −52.4466 −2.24451
\(547\) 32.6353 1.39538 0.697692 0.716398i \(-0.254210\pi\)
0.697692 + 0.716398i \(0.254210\pi\)
\(548\) −9.55561 −0.408195
\(549\) −70.2323 −2.99744
\(550\) −1.24709 −0.0531763
\(551\) 19.3926 0.826155
\(552\) 60.0256 2.55486
\(553\) −6.57487 −0.279592
\(554\) −4.80651 −0.204209
\(555\) 17.5286 0.744049
\(556\) −11.4939 −0.487451
\(557\) 32.9759 1.39723 0.698617 0.715496i \(-0.253799\pi\)
0.698617 + 0.715496i \(0.253799\pi\)
\(558\) −33.2911 −1.40933
\(559\) −19.0285 −0.804819
\(560\) −1.22166 −0.0516245
\(561\) −1.96168 −0.0828222
\(562\) 23.9478 1.01018
\(563\) 9.65745 0.407013 0.203506 0.979074i \(-0.434766\pi\)
0.203506 + 0.979074i \(0.434766\pi\)
\(564\) 8.45509 0.356023
\(565\) −2.77553 −0.116767
\(566\) 30.7915 1.29426
\(567\) −26.7547 −1.12359
\(568\) 11.6741 0.489836
\(569\) 4.99900 0.209569 0.104784 0.994495i \(-0.466585\pi\)
0.104784 + 0.994495i \(0.466585\pi\)
\(570\) 11.9650 0.501159
\(571\) −21.0497 −0.880901 −0.440450 0.897777i \(-0.645181\pi\)
−0.440450 + 0.897777i \(0.645181\pi\)
\(572\) 1.89973 0.0794316
\(573\) −62.2313 −2.59975
\(574\) 8.75125 0.365270
\(575\) −31.0402 −1.29447
\(576\) 37.2187 1.55078
\(577\) −16.8749 −0.702511 −0.351255 0.936280i \(-0.614245\pi\)
−0.351255 + 0.936280i \(0.614245\pi\)
\(578\) −11.2398 −0.467513
\(579\) 23.1258 0.961075
\(580\) 2.25318 0.0935582
\(581\) 19.7000 0.817294
\(582\) −49.9144 −2.06902
\(583\) 2.96632 0.122852
\(584\) −32.2657 −1.33516
\(585\) 23.8575 0.986386
\(586\) 3.48151 0.143820
\(587\) −18.4303 −0.760701 −0.380350 0.924842i \(-0.624197\pi\)
−0.380350 + 0.924842i \(0.624197\pi\)
\(588\) 8.14185 0.335764
\(589\) −37.0906 −1.52829
\(590\) 8.17153 0.336416
\(591\) 36.6323 1.50685
\(592\) −5.22012 −0.214546
\(593\) 12.7872 0.525107 0.262553 0.964917i \(-0.415435\pi\)
0.262553 + 0.964917i \(0.415435\pi\)
\(594\) −2.43125 −0.0997554
\(595\) 4.66471 0.191234
\(596\) 15.3893 0.630371
\(597\) 54.1434 2.21594
\(598\) −38.7785 −1.58577
\(599\) −25.0885 −1.02509 −0.512544 0.858661i \(-0.671297\pi\)
−0.512544 + 0.858661i \(0.671297\pi\)
\(600\) −40.1210 −1.63793
\(601\) −42.7400 −1.74340 −0.871701 0.490038i \(-0.836983\pi\)
−0.871701 + 0.490038i \(0.836983\pi\)
\(602\) −9.27562 −0.378046
\(603\) 45.9370 1.87070
\(604\) 14.2963 0.581708
\(605\) 7.28315 0.296102
\(606\) −10.1220 −0.411177
\(607\) −6.18185 −0.250914 −0.125457 0.992099i \(-0.540040\pi\)
−0.125457 + 0.992099i \(0.540040\pi\)
\(608\) 33.5584 1.36097
\(609\) 28.3277 1.14790
\(610\) 7.45599 0.301884
\(611\) −15.4042 −0.623188
\(612\) −14.8905 −0.601914
\(613\) 15.2898 0.617548 0.308774 0.951135i \(-0.400081\pi\)
0.308774 + 0.951135i \(0.400081\pi\)
\(614\) −17.8554 −0.720584
\(615\) −5.98276 −0.241248
\(616\) 2.61154 0.105222
\(617\) −9.88094 −0.397792 −0.198896 0.980021i \(-0.563736\pi\)
−0.198896 + 0.980021i \(0.563736\pi\)
\(618\) 27.3290 1.09933
\(619\) 1.38431 0.0556403 0.0278201 0.999613i \(-0.491143\pi\)
0.0278201 + 0.999613i \(0.491143\pi\)
\(620\) −4.30945 −0.173072
\(621\) −60.5139 −2.42834
\(622\) −19.9053 −0.798131
\(623\) −6.13987 −0.245989
\(624\) −10.6778 −0.427454
\(625\) 18.5218 0.740871
\(626\) −3.77277 −0.150790
\(627\) −5.44883 −0.217605
\(628\) −1.22567 −0.0489097
\(629\) 19.9322 0.794749
\(630\) 11.6296 0.463333
\(631\) −7.16337 −0.285169 −0.142585 0.989783i \(-0.545541\pi\)
−0.142585 + 0.989783i \(0.545541\pi\)
\(632\) −6.28360 −0.249948
\(633\) 24.1908 0.961497
\(634\) 13.7077 0.544404
\(635\) 2.72896 0.108295
\(636\) 33.8395 1.34182
\(637\) −14.8335 −0.587726
\(638\) 0.841512 0.0333158
\(639\) −23.6745 −0.936551
\(640\) 3.14552 0.124338
\(641\) 7.86465 0.310635 0.155318 0.987865i \(-0.450360\pi\)
0.155318 + 0.987865i \(0.450360\pi\)
\(642\) 46.0505 1.81747
\(643\) −6.74667 −0.266063 −0.133031 0.991112i \(-0.542471\pi\)
−0.133031 + 0.991112i \(0.542471\pi\)
\(644\) 23.0492 0.908266
\(645\) 6.34124 0.249686
\(646\) 13.6057 0.535308
\(647\) −37.2971 −1.46630 −0.733151 0.680066i \(-0.761951\pi\)
−0.733151 + 0.680066i \(0.761951\pi\)
\(648\) −25.5695 −1.00446
\(649\) −3.72129 −0.146073
\(650\) 25.9195 1.01665
\(651\) −54.1799 −2.12348
\(652\) −12.4782 −0.488682
\(653\) 1.44423 0.0565169 0.0282585 0.999601i \(-0.491004\pi\)
0.0282585 + 0.999601i \(0.491004\pi\)
\(654\) −26.4970 −1.03611
\(655\) 1.44605 0.0565017
\(656\) 1.78170 0.0695637
\(657\) 65.4331 2.55279
\(658\) −7.50894 −0.292729
\(659\) 29.4506 1.14723 0.573616 0.819124i \(-0.305540\pi\)
0.573616 + 0.819124i \(0.305540\pi\)
\(660\) −0.633084 −0.0246428
\(661\) 36.3427 1.41357 0.706783 0.707431i \(-0.250146\pi\)
0.706783 + 0.707431i \(0.250146\pi\)
\(662\) −16.5144 −0.641851
\(663\) 40.7714 1.58343
\(664\) 18.8273 0.730640
\(665\) 12.9568 0.502445
\(666\) 49.6929 1.92556
\(667\) 20.9453 0.811004
\(668\) 20.4441 0.791008
\(669\) −11.9317 −0.461307
\(670\) −4.87676 −0.188406
\(671\) −3.39543 −0.131079
\(672\) 49.0203 1.89100
\(673\) −35.3331 −1.36199 −0.680995 0.732288i \(-0.738453\pi\)
−0.680995 + 0.732288i \(0.738453\pi\)
\(674\) −6.52191 −0.251215
\(675\) 40.4474 1.55682
\(676\) −25.1990 −0.969192
\(677\) 51.4884 1.97886 0.989430 0.145011i \(-0.0463216\pi\)
0.989430 + 0.145011i \(0.0463216\pi\)
\(678\) −11.8254 −0.454152
\(679\) −54.0520 −2.07433
\(680\) 4.45805 0.170959
\(681\) −12.3739 −0.474167
\(682\) −1.60948 −0.0616304
\(683\) −24.5921 −0.940990 −0.470495 0.882403i \(-0.655925\pi\)
−0.470495 + 0.882403i \(0.655925\pi\)
\(684\) −41.3604 −1.58146
\(685\) −5.80163 −0.221669
\(686\) 13.2234 0.504871
\(687\) −29.0177 −1.10709
\(688\) −1.88846 −0.0719968
\(689\) −61.6518 −2.34875
\(690\) 12.9229 0.491968
\(691\) 30.1151 1.14563 0.572816 0.819684i \(-0.305851\pi\)
0.572816 + 0.819684i \(0.305851\pi\)
\(692\) 17.0214 0.647055
\(693\) −5.29607 −0.201181
\(694\) 19.8270 0.752622
\(695\) −6.97847 −0.264709
\(696\) 27.0728 1.02619
\(697\) −6.80313 −0.257687
\(698\) 17.4638 0.661014
\(699\) −20.6414 −0.780728
\(700\) −15.4060 −0.582294
\(701\) 40.9292 1.54588 0.772938 0.634481i \(-0.218786\pi\)
0.772938 + 0.634481i \(0.218786\pi\)
\(702\) 50.5309 1.90717
\(703\) 55.3643 2.08810
\(704\) 1.79937 0.0678162
\(705\) 5.13346 0.193337
\(706\) 14.1853 0.533871
\(707\) −10.9610 −0.412232
\(708\) −42.4521 −1.59545
\(709\) 2.94106 0.110454 0.0552269 0.998474i \(-0.482412\pi\)
0.0552269 + 0.998474i \(0.482412\pi\)
\(710\) 2.51333 0.0943237
\(711\) 12.7428 0.477893
\(712\) −5.86787 −0.219908
\(713\) −40.0601 −1.50026
\(714\) 19.8744 0.743782
\(715\) 1.15341 0.0431351
\(716\) 3.64452 0.136202
\(717\) −11.9919 −0.447845
\(718\) −23.2552 −0.867878
\(719\) 26.2380 0.978511 0.489256 0.872140i \(-0.337268\pi\)
0.489256 + 0.872140i \(0.337268\pi\)
\(720\) 2.36771 0.0882392
\(721\) 29.5944 1.10215
\(722\) 19.7549 0.735200
\(723\) −2.76846 −0.102960
\(724\) −11.7058 −0.435041
\(725\) −13.9998 −0.519939
\(726\) 31.0306 1.15165
\(727\) −11.1260 −0.412641 −0.206321 0.978484i \(-0.566149\pi\)
−0.206321 + 0.978484i \(0.566149\pi\)
\(728\) −54.2781 −2.01168
\(729\) −27.9134 −1.03383
\(730\) −6.94650 −0.257101
\(731\) 7.21077 0.266700
\(732\) −38.7348 −1.43168
\(733\) −1.05286 −0.0388883 −0.0194442 0.999811i \(-0.506190\pi\)
−0.0194442 + 0.999811i \(0.506190\pi\)
\(734\) 20.1251 0.742832
\(735\) 4.94327 0.182335
\(736\) 36.2451 1.33601
\(737\) 2.22086 0.0818064
\(738\) −16.9609 −0.624338
\(739\) 33.5776 1.23517 0.617586 0.786503i \(-0.288111\pi\)
0.617586 + 0.786503i \(0.288111\pi\)
\(740\) 6.43263 0.236468
\(741\) 113.248 4.16027
\(742\) −30.0528 −1.10327
\(743\) −10.2980 −0.377796 −0.188898 0.981997i \(-0.560491\pi\)
−0.188898 + 0.981997i \(0.560491\pi\)
\(744\) −51.7797 −1.89834
\(745\) 9.34353 0.342320
\(746\) −12.1769 −0.445829
\(747\) −38.1807 −1.39696
\(748\) −0.719895 −0.0263220
\(749\) 49.8678 1.82213
\(750\) −18.1194 −0.661627
\(751\) −32.3794 −1.18154 −0.590770 0.806840i \(-0.701176\pi\)
−0.590770 + 0.806840i \(0.701176\pi\)
\(752\) −1.52877 −0.0557486
\(753\) 6.27841 0.228798
\(754\) −17.4899 −0.636945
\(755\) 8.67992 0.315894
\(756\) −30.0346 −1.09235
\(757\) 7.52549 0.273518 0.136759 0.990604i \(-0.456331\pi\)
0.136759 + 0.990604i \(0.456331\pi\)
\(758\) −31.6568 −1.14983
\(759\) −5.88507 −0.213615
\(760\) 12.3828 0.449173
\(761\) −48.3848 −1.75395 −0.876974 0.480539i \(-0.840441\pi\)
−0.876974 + 0.480539i \(0.840441\pi\)
\(762\) 11.6270 0.421201
\(763\) −28.6934 −1.03877
\(764\) −22.8375 −0.826233
\(765\) −9.04070 −0.326867
\(766\) −20.5713 −0.743272
\(767\) 77.3430 2.79269
\(768\) 50.7633 1.83176
\(769\) −3.19139 −0.115085 −0.0575423 0.998343i \(-0.518326\pi\)
−0.0575423 + 0.998343i \(0.518326\pi\)
\(770\) 0.562241 0.0202617
\(771\) 45.4437 1.63662
\(772\) 8.48667 0.305442
\(773\) 34.1671 1.22890 0.614452 0.788954i \(-0.289377\pi\)
0.614452 + 0.788954i \(0.289377\pi\)
\(774\) 17.9772 0.646175
\(775\) 26.7761 0.961827
\(776\) −51.6574 −1.85439
\(777\) 80.8732 2.90131
\(778\) 5.65653 0.202796
\(779\) −18.8966 −0.677040
\(780\) 13.1580 0.471131
\(781\) −1.14456 −0.0409557
\(782\) 14.6950 0.525491
\(783\) −27.2930 −0.975373
\(784\) −1.47213 −0.0525762
\(785\) −0.744160 −0.0265602
\(786\) 6.16102 0.219756
\(787\) 53.2293 1.89742 0.948710 0.316148i \(-0.102390\pi\)
0.948710 + 0.316148i \(0.102390\pi\)
\(788\) 13.4433 0.478896
\(789\) −18.9112 −0.673255
\(790\) −1.35280 −0.0481305
\(791\) −12.8057 −0.455317
\(792\) −5.06145 −0.179851
\(793\) 70.5705 2.50603
\(794\) 6.17400 0.219107
\(795\) 20.5455 0.728672
\(796\) 19.8695 0.704254
\(797\) −48.3377 −1.71221 −0.856105 0.516802i \(-0.827122\pi\)
−0.856105 + 0.516802i \(0.827122\pi\)
\(798\) 55.2039 1.95420
\(799\) 5.83737 0.206511
\(800\) −24.2262 −0.856525
\(801\) 11.8997 0.420456
\(802\) 8.33556 0.294339
\(803\) 3.16341 0.111634
\(804\) 25.3354 0.893509
\(805\) 13.9942 0.493230
\(806\) 33.4514 1.17828
\(807\) 60.5848 2.13268
\(808\) −10.4754 −0.368524
\(809\) −16.7382 −0.588483 −0.294241 0.955731i \(-0.595067\pi\)
−0.294241 + 0.955731i \(0.595067\pi\)
\(810\) −5.50487 −0.193421
\(811\) −6.25111 −0.219506 −0.109753 0.993959i \(-0.535006\pi\)
−0.109753 + 0.993959i \(0.535006\pi\)
\(812\) 10.3957 0.364816
\(813\) 45.0646 1.58048
\(814\) 2.40244 0.0842056
\(815\) −7.57604 −0.265377
\(816\) 4.04631 0.141649
\(817\) 20.0289 0.700721
\(818\) 23.2608 0.813294
\(819\) 110.073 3.84627
\(820\) −2.19554 −0.0766717
\(821\) −34.6421 −1.20902 −0.604509 0.796598i \(-0.706631\pi\)
−0.604509 + 0.796598i \(0.706631\pi\)
\(822\) −24.7184 −0.862154
\(823\) −3.25767 −0.113555 −0.0567775 0.998387i \(-0.518083\pi\)
−0.0567775 + 0.998387i \(0.518083\pi\)
\(824\) 28.2834 0.985298
\(825\) 3.93357 0.136949
\(826\) 37.7016 1.31181
\(827\) −38.9434 −1.35420 −0.677098 0.735893i \(-0.736763\pi\)
−0.677098 + 0.735893i \(0.736763\pi\)
\(828\) −44.6718 −1.55245
\(829\) −21.0658 −0.731646 −0.365823 0.930684i \(-0.619212\pi\)
−0.365823 + 0.930684i \(0.619212\pi\)
\(830\) 4.05333 0.140693
\(831\) 15.1607 0.525918
\(832\) −37.3979 −1.29654
\(833\) 5.62111 0.194760
\(834\) −29.7325 −1.02955
\(835\) 12.4125 0.429554
\(836\) −1.99960 −0.0691577
\(837\) 52.2009 1.80433
\(838\) −13.1330 −0.453673
\(839\) −48.1056 −1.66079 −0.830395 0.557175i \(-0.811885\pi\)
−0.830395 + 0.557175i \(0.811885\pi\)
\(840\) 18.0882 0.624101
\(841\) −19.5533 −0.674250
\(842\) −23.2033 −0.799637
\(843\) −75.5359 −2.60159
\(844\) 8.87749 0.305576
\(845\) −15.2994 −0.526316
\(846\) 14.5531 0.500347
\(847\) 33.6028 1.15461
\(848\) −6.11855 −0.210112
\(849\) −97.1224 −3.33323
\(850\) −9.82209 −0.336895
\(851\) 59.7969 2.04981
\(852\) −13.0571 −0.447328
\(853\) −47.0803 −1.61200 −0.805999 0.591917i \(-0.798371\pi\)
−0.805999 + 0.591917i \(0.798371\pi\)
\(854\) 34.4003 1.17715
\(855\) −25.1117 −0.858803
\(856\) 47.6586 1.62894
\(857\) 12.8105 0.437599 0.218799 0.975770i \(-0.429786\pi\)
0.218799 + 0.975770i \(0.429786\pi\)
\(858\) 4.91421 0.167768
\(859\) 8.98755 0.306651 0.153326 0.988176i \(-0.451002\pi\)
0.153326 + 0.988176i \(0.451002\pi\)
\(860\) 2.32710 0.0793534
\(861\) −27.6031 −0.940712
\(862\) −13.6324 −0.464320
\(863\) −23.3426 −0.794591 −0.397296 0.917691i \(-0.630051\pi\)
−0.397296 + 0.917691i \(0.630051\pi\)
\(864\) −47.2297 −1.60679
\(865\) 10.3344 0.351381
\(866\) 29.1589 0.990859
\(867\) 35.4524 1.20403
\(868\) −19.8829 −0.674868
\(869\) 0.616061 0.0208984
\(870\) 5.82852 0.197605
\(871\) −46.1582 −1.56401
\(872\) −27.4223 −0.928636
\(873\) 104.759 3.54554
\(874\) 40.8172 1.38066
\(875\) −19.6214 −0.663324
\(876\) 36.0879 1.21930
\(877\) −16.5374 −0.558427 −0.279214 0.960229i \(-0.590074\pi\)
−0.279214 + 0.960229i \(0.590074\pi\)
\(878\) 36.4472 1.23003
\(879\) −10.9814 −0.370392
\(880\) 0.114469 0.00385874
\(881\) −44.3221 −1.49325 −0.746626 0.665245i \(-0.768327\pi\)
−0.746626 + 0.665245i \(0.768327\pi\)
\(882\) 14.0140 0.471875
\(883\) −24.0672 −0.809925 −0.404963 0.914333i \(-0.632715\pi\)
−0.404963 + 0.914333i \(0.632715\pi\)
\(884\) 14.9622 0.503234
\(885\) −25.7746 −0.866402
\(886\) −7.64487 −0.256834
\(887\) −48.9903 −1.64493 −0.822466 0.568814i \(-0.807403\pi\)
−0.822466 + 0.568814i \(0.807403\pi\)
\(888\) 77.2904 2.59370
\(889\) 12.5908 0.422282
\(890\) −1.26330 −0.0423458
\(891\) 2.50690 0.0839843
\(892\) −4.37869 −0.146609
\(893\) 16.2141 0.542583
\(894\) 39.8090 1.33141
\(895\) 2.21275 0.0739640
\(896\) 14.5127 0.484836
\(897\) 122.315 4.08398
\(898\) 4.19740 0.140069
\(899\) −18.0679 −0.602600
\(900\) 29.8586 0.995286
\(901\) 23.3627 0.778324
\(902\) −0.819986 −0.0273026
\(903\) 29.2571 0.973615
\(904\) −12.2384 −0.407042
\(905\) −7.10708 −0.236247
\(906\) 36.9816 1.22863
\(907\) −32.5622 −1.08121 −0.540605 0.841277i \(-0.681805\pi\)
−0.540605 + 0.841277i \(0.681805\pi\)
\(908\) −4.54094 −0.150696
\(909\) 21.2436 0.704607
\(910\) −11.6856 −0.387373
\(911\) 25.4066 0.841757 0.420879 0.907117i \(-0.361722\pi\)
0.420879 + 0.907117i \(0.361722\pi\)
\(912\) 11.2392 0.372166
\(913\) −1.84588 −0.0610896
\(914\) −5.50213 −0.181994
\(915\) −23.5176 −0.777468
\(916\) −10.6489 −0.351849
\(917\) 6.67173 0.220320
\(918\) −19.1485 −0.631995
\(919\) −15.3234 −0.505473 −0.252737 0.967535i \(-0.581331\pi\)
−0.252737 + 0.967535i \(0.581331\pi\)
\(920\) 13.3742 0.440935
\(921\) 56.3193 1.85578
\(922\) 33.8712 1.11549
\(923\) 23.7885 0.783010
\(924\) −2.92091 −0.0960909
\(925\) −39.9681 −1.31414
\(926\) −13.9094 −0.457090
\(927\) −57.3572 −1.88386
\(928\) 16.3473 0.536626
\(929\) 1.95001 0.0639779 0.0319889 0.999488i \(-0.489816\pi\)
0.0319889 + 0.999488i \(0.489816\pi\)
\(930\) −11.1477 −0.365547
\(931\) 15.6134 0.511707
\(932\) −7.57493 −0.248125
\(933\) 62.7852 2.05549
\(934\) 2.95287 0.0966208
\(935\) −0.437080 −0.0142940
\(936\) 105.197 3.43846
\(937\) −32.9330 −1.07587 −0.537937 0.842985i \(-0.680796\pi\)
−0.537937 + 0.842985i \(0.680796\pi\)
\(938\) −22.5003 −0.734660
\(939\) 11.9000 0.388343
\(940\) 1.88387 0.0614450
\(941\) 10.7913 0.351788 0.175894 0.984409i \(-0.443718\pi\)
0.175894 + 0.984409i \(0.443718\pi\)
\(942\) −3.17057 −0.103303
\(943\) −20.4095 −0.664624
\(944\) 7.67581 0.249826
\(945\) −18.2353 −0.593195
\(946\) 0.869119 0.0282575
\(947\) −21.4727 −0.697768 −0.348884 0.937166i \(-0.613439\pi\)
−0.348884 + 0.937166i \(0.613439\pi\)
\(948\) 7.02797 0.228258
\(949\) −65.7482 −2.13428
\(950\) −27.2822 −0.885150
\(951\) −43.2368 −1.40205
\(952\) 20.5685 0.666628
\(953\) 24.1400 0.781971 0.390985 0.920397i \(-0.372134\pi\)
0.390985 + 0.920397i \(0.372134\pi\)
\(954\) 58.2455 1.88577
\(955\) −13.8657 −0.448683
\(956\) −4.40076 −0.142331
\(957\) −2.65429 −0.0858010
\(958\) −10.1148 −0.326795
\(959\) −26.7674 −0.864366
\(960\) 12.4629 0.402237
\(961\) 3.55695 0.114740
\(962\) −49.9322 −1.60988
\(963\) −96.6492 −3.11448
\(964\) −1.01597 −0.0327221
\(965\) 5.15263 0.165869
\(966\) 59.6236 1.91836
\(967\) −15.8818 −0.510723 −0.255361 0.966846i \(-0.582194\pi\)
−0.255361 + 0.966846i \(0.582194\pi\)
\(968\) 32.1142 1.03219
\(969\) −42.9149 −1.37863
\(970\) −11.1214 −0.357085
\(971\) 47.3609 1.51989 0.759943 0.649990i \(-0.225227\pi\)
0.759943 + 0.649990i \(0.225227\pi\)
\(972\) −0.674248 −0.0216265
\(973\) −32.1971 −1.03219
\(974\) 21.3160 0.683009
\(975\) −81.7551 −2.61826
\(976\) 7.00367 0.224182
\(977\) −22.5071 −0.720067 −0.360034 0.932939i \(-0.617235\pi\)
−0.360034 + 0.932939i \(0.617235\pi\)
\(978\) −32.2785 −1.03215
\(979\) 0.575302 0.0183867
\(980\) 1.81407 0.0579485
\(981\) 55.6110 1.77552
\(982\) 28.2882 0.902714
\(983\) −40.4311 −1.28955 −0.644777 0.764371i \(-0.723050\pi\)
−0.644777 + 0.764371i \(0.723050\pi\)
\(984\) −26.3803 −0.840972
\(985\) 8.16199 0.260063
\(986\) 6.62774 0.211070
\(987\) 23.6846 0.753890
\(988\) 41.5596 1.32219
\(989\) 21.6324 0.687871
\(990\) −1.08968 −0.0346324
\(991\) 0.865820 0.0275037 0.0137518 0.999905i \(-0.495623\pi\)
0.0137518 + 0.999905i \(0.495623\pi\)
\(992\) −31.2660 −0.992697
\(993\) 52.0896 1.65301
\(994\) 11.5960 0.367802
\(995\) 12.0636 0.382443
\(996\) −21.0576 −0.667235
\(997\) −56.6100 −1.79286 −0.896429 0.443188i \(-0.853848\pi\)
−0.896429 + 0.443188i \(0.853848\pi\)
\(998\) −36.3345 −1.15015
\(999\) −77.9192 −2.46525
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.a.1.97 149
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.a.1.97 149 1.1 even 1 trivial