Properties

Label 4001.2.a.b.1.163
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(0\)
Dimension: \(184\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.163
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.45513 q^{2} -1.68371 q^{3} +4.02766 q^{4} -3.39190 q^{5} -4.13372 q^{6} +4.85354 q^{7} +4.97818 q^{8} -0.165134 q^{9} -8.32756 q^{10} -3.48051 q^{11} -6.78140 q^{12} -0.426081 q^{13} +11.9161 q^{14} +5.71097 q^{15} +4.16675 q^{16} -4.22969 q^{17} -0.405426 q^{18} +7.37914 q^{19} -13.6614 q^{20} -8.17194 q^{21} -8.54510 q^{22} +5.74129 q^{23} -8.38179 q^{24} +6.50500 q^{25} -1.04608 q^{26} +5.32916 q^{27} +19.5484 q^{28} -1.35939 q^{29} +14.0212 q^{30} +1.93786 q^{31} +0.273552 q^{32} +5.86015 q^{33} -10.3844 q^{34} -16.4627 q^{35} -0.665105 q^{36} +5.57311 q^{37} +18.1167 q^{38} +0.717395 q^{39} -16.8855 q^{40} -3.32289 q^{41} -20.0632 q^{42} -3.08418 q^{43} -14.0183 q^{44} +0.560119 q^{45} +14.0956 q^{46} +13.0313 q^{47} -7.01558 q^{48} +16.5569 q^{49} +15.9706 q^{50} +7.12156 q^{51} -1.71611 q^{52} +2.68870 q^{53} +13.0838 q^{54} +11.8055 q^{55} +24.1618 q^{56} -12.4243 q^{57} -3.33748 q^{58} -7.51492 q^{59} +23.0019 q^{60} +13.7021 q^{61} +4.75769 q^{62} -0.801486 q^{63} -7.66189 q^{64} +1.44522 q^{65} +14.3874 q^{66} -4.51784 q^{67} -17.0358 q^{68} -9.66665 q^{69} -40.4182 q^{70} -2.97385 q^{71} -0.822067 q^{72} +13.5805 q^{73} +13.6827 q^{74} -10.9525 q^{75} +29.7207 q^{76} -16.8928 q^{77} +1.76130 q^{78} -11.0053 q^{79} -14.1332 q^{80} -8.47733 q^{81} -8.15813 q^{82} +10.2706 q^{83} -32.9138 q^{84} +14.3467 q^{85} -7.57207 q^{86} +2.28882 q^{87} -17.3266 q^{88} +3.18827 q^{89} +1.37516 q^{90} -2.06800 q^{91} +23.1240 q^{92} -3.26278 q^{93} +31.9936 q^{94} -25.0293 q^{95} -0.460581 q^{96} +10.7849 q^{97} +40.6493 q^{98} +0.574750 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9} + 46 q^{10} + 25 q^{11} + 61 q^{12} + 52 q^{13} + 28 q^{14} + 59 q^{15} + 279 q^{16} + 16 q^{17} - 2 q^{18}+ \cdots + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.45513 1.73604 0.868020 0.496530i \(-0.165393\pi\)
0.868020 + 0.496530i \(0.165393\pi\)
\(3\) −1.68371 −0.972088 −0.486044 0.873934i \(-0.661561\pi\)
−0.486044 + 0.873934i \(0.661561\pi\)
\(4\) 4.02766 2.01383
\(5\) −3.39190 −1.51690 −0.758452 0.651728i \(-0.774044\pi\)
−0.758452 + 0.651728i \(0.774044\pi\)
\(6\) −4.13372 −1.68758
\(7\) 4.85354 1.83447 0.917233 0.398350i \(-0.130417\pi\)
0.917233 + 0.398350i \(0.130417\pi\)
\(8\) 4.97818 1.76005
\(9\) −0.165134 −0.0550447
\(10\) −8.32756 −2.63341
\(11\) −3.48051 −1.04941 −0.524706 0.851283i \(-0.675825\pi\)
−0.524706 + 0.851283i \(0.675825\pi\)
\(12\) −6.78140 −1.95762
\(13\) −0.426081 −0.118174 −0.0590868 0.998253i \(-0.518819\pi\)
−0.0590868 + 0.998253i \(0.518819\pi\)
\(14\) 11.9161 3.18471
\(15\) 5.71097 1.47457
\(16\) 4.16675 1.04169
\(17\) −4.22969 −1.02585 −0.512926 0.858433i \(-0.671438\pi\)
−0.512926 + 0.858433i \(0.671438\pi\)
\(18\) −0.405426 −0.0955598
\(19\) 7.37914 1.69289 0.846445 0.532476i \(-0.178738\pi\)
0.846445 + 0.532476i \(0.178738\pi\)
\(20\) −13.6614 −3.05479
\(21\) −8.17194 −1.78326
\(22\) −8.54510 −1.82182
\(23\) 5.74129 1.19714 0.598571 0.801070i \(-0.295735\pi\)
0.598571 + 0.801070i \(0.295735\pi\)
\(24\) −8.38179 −1.71093
\(25\) 6.50500 1.30100
\(26\) −1.04608 −0.205154
\(27\) 5.32916 1.02560
\(28\) 19.5484 3.69431
\(29\) −1.35939 −0.252433 −0.126216 0.992003i \(-0.540283\pi\)
−0.126216 + 0.992003i \(0.540283\pi\)
\(30\) 14.0212 2.55990
\(31\) 1.93786 0.348049 0.174025 0.984741i \(-0.444323\pi\)
0.174025 + 0.984741i \(0.444323\pi\)
\(32\) 0.273552 0.0483576
\(33\) 5.86015 1.02012
\(34\) −10.3844 −1.78092
\(35\) −16.4627 −2.78271
\(36\) −0.665105 −0.110851
\(37\) 5.57311 0.916214 0.458107 0.888897i \(-0.348528\pi\)
0.458107 + 0.888897i \(0.348528\pi\)
\(38\) 18.1167 2.93892
\(39\) 0.717395 0.114875
\(40\) −16.8855 −2.66983
\(41\) −3.32289 −0.518949 −0.259474 0.965750i \(-0.583549\pi\)
−0.259474 + 0.965750i \(0.583549\pi\)
\(42\) −20.0632 −3.09581
\(43\) −3.08418 −0.470333 −0.235167 0.971955i \(-0.575564\pi\)
−0.235167 + 0.971955i \(0.575564\pi\)
\(44\) −14.0183 −2.11334
\(45\) 0.560119 0.0834976
\(46\) 14.0956 2.07829
\(47\) 13.0313 1.90081 0.950406 0.311013i \(-0.100668\pi\)
0.950406 + 0.311013i \(0.100668\pi\)
\(48\) −7.01558 −1.01261
\(49\) 16.5569 2.36527
\(50\) 15.9706 2.25859
\(51\) 7.12156 0.997218
\(52\) −1.71611 −0.237982
\(53\) 2.68870 0.369321 0.184661 0.982802i \(-0.440881\pi\)
0.184661 + 0.982802i \(0.440881\pi\)
\(54\) 13.0838 1.78048
\(55\) 11.8055 1.59186
\(56\) 24.1618 3.22876
\(57\) −12.4243 −1.64564
\(58\) −3.33748 −0.438233
\(59\) −7.51492 −0.978359 −0.489180 0.872183i \(-0.662704\pi\)
−0.489180 + 0.872183i \(0.662704\pi\)
\(60\) 23.0019 2.96953
\(61\) 13.7021 1.75437 0.877186 0.480150i \(-0.159418\pi\)
0.877186 + 0.480150i \(0.159418\pi\)
\(62\) 4.75769 0.604227
\(63\) −0.801486 −0.100978
\(64\) −7.66189 −0.957736
\(65\) 1.44522 0.179258
\(66\) 14.3874 1.77097
\(67\) −4.51784 −0.551941 −0.275971 0.961166i \(-0.588999\pi\)
−0.275971 + 0.961166i \(0.588999\pi\)
\(68\) −17.0358 −2.06589
\(69\) −9.66665 −1.16373
\(70\) −40.4182 −4.83090
\(71\) −2.97385 −0.352931 −0.176466 0.984307i \(-0.556466\pi\)
−0.176466 + 0.984307i \(0.556466\pi\)
\(72\) −0.822067 −0.0968815
\(73\) 13.5805 1.58948 0.794740 0.606950i \(-0.207607\pi\)
0.794740 + 0.606950i \(0.207607\pi\)
\(74\) 13.6827 1.59058
\(75\) −10.9525 −1.26469
\(76\) 29.7207 3.40920
\(77\) −16.8928 −1.92511
\(78\) 1.76130 0.199428
\(79\) −11.0053 −1.23819 −0.619095 0.785316i \(-0.712500\pi\)
−0.619095 + 0.785316i \(0.712500\pi\)
\(80\) −14.1332 −1.58014
\(81\) −8.47733 −0.941925
\(82\) −8.15813 −0.900915
\(83\) 10.2706 1.12735 0.563675 0.825997i \(-0.309387\pi\)
0.563675 + 0.825997i \(0.309387\pi\)
\(84\) −32.9138 −3.59119
\(85\) 14.3467 1.55612
\(86\) −7.57207 −0.816517
\(87\) 2.28882 0.245387
\(88\) −17.3266 −1.84702
\(89\) 3.18827 0.337956 0.168978 0.985620i \(-0.445953\pi\)
0.168978 + 0.985620i \(0.445953\pi\)
\(90\) 1.37516 0.144955
\(91\) −2.06800 −0.216785
\(92\) 23.1240 2.41084
\(93\) −3.26278 −0.338334
\(94\) 31.9936 3.29988
\(95\) −25.0293 −2.56795
\(96\) −0.460581 −0.0470078
\(97\) 10.7849 1.09504 0.547519 0.836793i \(-0.315572\pi\)
0.547519 + 0.836793i \(0.315572\pi\)
\(98\) 40.6493 4.10620
\(99\) 0.574750 0.0577646
\(100\) 26.2000 2.62000
\(101\) −4.99720 −0.497240 −0.248620 0.968601i \(-0.579977\pi\)
−0.248620 + 0.968601i \(0.579977\pi\)
\(102\) 17.4844 1.73121
\(103\) 17.8445 1.75827 0.879135 0.476572i \(-0.158121\pi\)
0.879135 + 0.476572i \(0.158121\pi\)
\(104\) −2.12111 −0.207992
\(105\) 27.7184 2.70504
\(106\) 6.60110 0.641156
\(107\) −3.43821 −0.332384 −0.166192 0.986093i \(-0.553147\pi\)
−0.166192 + 0.986093i \(0.553147\pi\)
\(108\) 21.4640 2.06538
\(109\) −2.21934 −0.212574 −0.106287 0.994335i \(-0.533896\pi\)
−0.106287 + 0.994335i \(0.533896\pi\)
\(110\) 28.9841 2.76353
\(111\) −9.38348 −0.890641
\(112\) 20.2235 1.91094
\(113\) 12.8825 1.21188 0.605940 0.795510i \(-0.292797\pi\)
0.605940 + 0.795510i \(0.292797\pi\)
\(114\) −30.5033 −2.85689
\(115\) −19.4739 −1.81595
\(116\) −5.47517 −0.508357
\(117\) 0.0703605 0.00650483
\(118\) −18.4501 −1.69847
\(119\) −20.5290 −1.88189
\(120\) 28.4302 2.59531
\(121\) 1.11393 0.101266
\(122\) 33.6404 3.04566
\(123\) 5.59477 0.504464
\(124\) 7.80503 0.700912
\(125\) −5.10481 −0.456588
\(126\) −1.96775 −0.175301
\(127\) −17.4405 −1.54759 −0.773796 0.633434i \(-0.781645\pi\)
−0.773796 + 0.633434i \(0.781645\pi\)
\(128\) −19.3580 −1.71103
\(129\) 5.19286 0.457206
\(130\) 3.54821 0.311199
\(131\) −13.9412 −1.21804 −0.609022 0.793153i \(-0.708438\pi\)
−0.609022 + 0.793153i \(0.708438\pi\)
\(132\) 23.6027 2.05435
\(133\) 35.8150 3.10555
\(134\) −11.0919 −0.958192
\(135\) −18.0760 −1.55573
\(136\) −21.0562 −1.80555
\(137\) 17.4345 1.48953 0.744764 0.667328i \(-0.232562\pi\)
0.744764 + 0.667328i \(0.232562\pi\)
\(138\) −23.7329 −2.02028
\(139\) 20.6453 1.75111 0.875554 0.483120i \(-0.160497\pi\)
0.875554 + 0.483120i \(0.160497\pi\)
\(140\) −66.3064 −5.60391
\(141\) −21.9409 −1.84776
\(142\) −7.30120 −0.612703
\(143\) 1.48298 0.124013
\(144\) −0.688072 −0.0573394
\(145\) 4.61092 0.382916
\(146\) 33.3419 2.75940
\(147\) −27.8769 −2.29925
\(148\) 22.4466 1.84510
\(149\) 11.0111 0.902062 0.451031 0.892508i \(-0.351056\pi\)
0.451031 + 0.892508i \(0.351056\pi\)
\(150\) −26.8898 −2.19555
\(151\) 21.9063 1.78271 0.891356 0.453304i \(-0.149755\pi\)
0.891356 + 0.453304i \(0.149755\pi\)
\(152\) 36.7347 2.97958
\(153\) 0.698467 0.0564677
\(154\) −41.4740 −3.34207
\(155\) −6.57302 −0.527957
\(156\) 2.88943 0.231339
\(157\) −12.5918 −1.00494 −0.502468 0.864596i \(-0.667574\pi\)
−0.502468 + 0.864596i \(0.667574\pi\)
\(158\) −27.0194 −2.14955
\(159\) −4.52698 −0.359013
\(160\) −0.927861 −0.0733538
\(161\) 27.8656 2.19612
\(162\) −20.8129 −1.63522
\(163\) −3.86920 −0.303059 −0.151529 0.988453i \(-0.548420\pi\)
−0.151529 + 0.988453i \(0.548420\pi\)
\(164\) −13.3835 −1.04508
\(165\) −19.8771 −1.54743
\(166\) 25.2158 1.95712
\(167\) −12.6164 −0.976289 −0.488144 0.872763i \(-0.662326\pi\)
−0.488144 + 0.872763i \(0.662326\pi\)
\(168\) −40.6814 −3.13864
\(169\) −12.8185 −0.986035
\(170\) 35.2230 2.70148
\(171\) −1.21855 −0.0931847
\(172\) −12.4221 −0.947173
\(173\) 8.33232 0.633495 0.316747 0.948510i \(-0.397409\pi\)
0.316747 + 0.948510i \(0.397409\pi\)
\(174\) 5.61934 0.426001
\(175\) 31.5723 2.38664
\(176\) −14.5024 −1.09316
\(177\) 12.6529 0.951052
\(178\) 7.82762 0.586705
\(179\) −15.9978 −1.19573 −0.597866 0.801596i \(-0.703985\pi\)
−0.597866 + 0.801596i \(0.703985\pi\)
\(180\) 2.25597 0.168150
\(181\) 11.9696 0.889696 0.444848 0.895606i \(-0.353258\pi\)
0.444848 + 0.895606i \(0.353258\pi\)
\(182\) −5.07721 −0.376348
\(183\) −23.0703 −1.70540
\(184\) 28.5812 2.10703
\(185\) −18.9034 −1.38981
\(186\) −8.01055 −0.587362
\(187\) 14.7215 1.07654
\(188\) 52.4857 3.82791
\(189\) 25.8653 1.88142
\(190\) −61.4502 −4.45807
\(191\) −2.60164 −0.188248 −0.0941241 0.995560i \(-0.530005\pi\)
−0.0941241 + 0.995560i \(0.530005\pi\)
\(192\) 12.9004 0.931004
\(193\) −7.91810 −0.569957 −0.284979 0.958534i \(-0.591987\pi\)
−0.284979 + 0.958534i \(0.591987\pi\)
\(194\) 26.4783 1.90103
\(195\) −2.43333 −0.174255
\(196\) 66.6855 4.76325
\(197\) 4.88564 0.348087 0.174044 0.984738i \(-0.444317\pi\)
0.174044 + 0.984738i \(0.444317\pi\)
\(198\) 1.41109 0.100282
\(199\) 13.8846 0.984255 0.492127 0.870523i \(-0.336219\pi\)
0.492127 + 0.870523i \(0.336219\pi\)
\(200\) 32.3831 2.28983
\(201\) 7.60671 0.536536
\(202\) −12.2688 −0.863227
\(203\) −6.59787 −0.463079
\(204\) 28.6833 2.00823
\(205\) 11.2709 0.787196
\(206\) 43.8106 3.05243
\(207\) −0.948083 −0.0658963
\(208\) −1.77537 −0.123100
\(209\) −25.6831 −1.77654
\(210\) 68.0523 4.69606
\(211\) 10.7942 0.743100 0.371550 0.928413i \(-0.378826\pi\)
0.371550 + 0.928413i \(0.378826\pi\)
\(212\) 10.8292 0.743751
\(213\) 5.00709 0.343080
\(214\) −8.44126 −0.577032
\(215\) 10.4612 0.713451
\(216\) 26.5295 1.80510
\(217\) 9.40546 0.638484
\(218\) −5.44877 −0.369037
\(219\) −22.8656 −1.54511
\(220\) 47.5487 3.20574
\(221\) 1.80219 0.121229
\(222\) −23.0377 −1.54619
\(223\) −8.45603 −0.566258 −0.283129 0.959082i \(-0.591372\pi\)
−0.283129 + 0.959082i \(0.591372\pi\)
\(224\) 1.32769 0.0887103
\(225\) −1.07420 −0.0716132
\(226\) 31.6281 2.10387
\(227\) −8.41642 −0.558617 −0.279309 0.960201i \(-0.590105\pi\)
−0.279309 + 0.960201i \(0.590105\pi\)
\(228\) −50.0409 −3.31404
\(229\) −19.3500 −1.27869 −0.639343 0.768921i \(-0.720794\pi\)
−0.639343 + 0.768921i \(0.720794\pi\)
\(230\) −47.8110 −3.15256
\(231\) 28.4425 1.87138
\(232\) −6.76729 −0.444295
\(233\) −1.72695 −0.113136 −0.0565681 0.998399i \(-0.518016\pi\)
−0.0565681 + 0.998399i \(0.518016\pi\)
\(234\) 0.172744 0.0112926
\(235\) −44.2009 −2.88335
\(236\) −30.2676 −1.97025
\(237\) 18.5296 1.20363
\(238\) −50.4014 −3.26704
\(239\) 0.851466 0.0550767 0.0275384 0.999621i \(-0.491233\pi\)
0.0275384 + 0.999621i \(0.491233\pi\)
\(240\) 23.7962 1.53604
\(241\) −29.7887 −1.91886 −0.959429 0.281949i \(-0.909019\pi\)
−0.959429 + 0.281949i \(0.909019\pi\)
\(242\) 2.73483 0.175802
\(243\) −1.71414 −0.109962
\(244\) 55.1874 3.53301
\(245\) −56.1593 −3.58789
\(246\) 13.7359 0.875769
\(247\) −3.14411 −0.200055
\(248\) 9.64699 0.612584
\(249\) −17.2928 −1.09588
\(250\) −12.5330 −0.792655
\(251\) 24.9382 1.57408 0.787042 0.616899i \(-0.211611\pi\)
0.787042 + 0.616899i \(0.211611\pi\)
\(252\) −3.22811 −0.203352
\(253\) −19.9826 −1.25630
\(254\) −42.8187 −2.68668
\(255\) −24.1556 −1.51268
\(256\) −32.2027 −2.01267
\(257\) 10.6895 0.666794 0.333397 0.942787i \(-0.391805\pi\)
0.333397 + 0.942787i \(0.391805\pi\)
\(258\) 12.7491 0.793727
\(259\) 27.0493 1.68076
\(260\) 5.82088 0.360996
\(261\) 0.224482 0.0138951
\(262\) −34.2274 −2.11457
\(263\) 17.7317 1.09339 0.546693 0.837333i \(-0.315886\pi\)
0.546693 + 0.837333i \(0.315886\pi\)
\(264\) 29.1729 1.79547
\(265\) −9.11980 −0.560225
\(266\) 87.9304 5.39136
\(267\) −5.36811 −0.328523
\(268\) −18.1963 −1.11152
\(269\) −11.0867 −0.675967 −0.337984 0.941152i \(-0.609745\pi\)
−0.337984 + 0.941152i \(0.609745\pi\)
\(270\) −44.3789 −2.70081
\(271\) −7.62285 −0.463055 −0.231527 0.972828i \(-0.574372\pi\)
−0.231527 + 0.972828i \(0.574372\pi\)
\(272\) −17.6241 −1.06862
\(273\) 3.48191 0.210735
\(274\) 42.8039 2.58588
\(275\) −22.6407 −1.36529
\(276\) −38.9340 −2.34355
\(277\) −10.5790 −0.635628 −0.317814 0.948153i \(-0.602949\pi\)
−0.317814 + 0.948153i \(0.602949\pi\)
\(278\) 50.6868 3.03999
\(279\) −0.320006 −0.0191583
\(280\) −81.9545 −4.89772
\(281\) 0.907789 0.0541542 0.0270771 0.999633i \(-0.491380\pi\)
0.0270771 + 0.999633i \(0.491380\pi\)
\(282\) −53.8677 −3.20778
\(283\) −26.3679 −1.56741 −0.783704 0.621135i \(-0.786672\pi\)
−0.783704 + 0.621135i \(0.786672\pi\)
\(284\) −11.9777 −0.710744
\(285\) 42.1420 2.49628
\(286\) 3.64090 0.215291
\(287\) −16.1278 −0.951994
\(288\) −0.0451727 −0.00266183
\(289\) 0.890314 0.0523714
\(290\) 11.3204 0.664758
\(291\) −18.1586 −1.06447
\(292\) 54.6978 3.20095
\(293\) −10.9282 −0.638432 −0.319216 0.947682i \(-0.603420\pi\)
−0.319216 + 0.947682i \(0.603420\pi\)
\(294\) −68.4414 −3.99159
\(295\) 25.4899 1.48408
\(296\) 27.7439 1.61258
\(297\) −18.5482 −1.07627
\(298\) 27.0336 1.56601
\(299\) −2.44625 −0.141471
\(300\) −44.1130 −2.54687
\(301\) −14.9692 −0.862811
\(302\) 53.7829 3.09486
\(303\) 8.41381 0.483361
\(304\) 30.7470 1.76346
\(305\) −46.4761 −2.66122
\(306\) 1.71483 0.0980301
\(307\) 17.2644 0.985330 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(308\) −68.0385 −3.87685
\(309\) −30.0449 −1.70919
\(310\) −16.1376 −0.916555
\(311\) −5.26031 −0.298285 −0.149142 0.988816i \(-0.547651\pi\)
−0.149142 + 0.988816i \(0.547651\pi\)
\(312\) 3.57132 0.202186
\(313\) 12.2534 0.692602 0.346301 0.938123i \(-0.387438\pi\)
0.346301 + 0.938123i \(0.387438\pi\)
\(314\) −30.9145 −1.74461
\(315\) 2.71856 0.153174
\(316\) −44.3255 −2.49351
\(317\) 26.1884 1.47088 0.735442 0.677587i \(-0.236974\pi\)
0.735442 + 0.677587i \(0.236974\pi\)
\(318\) −11.1143 −0.623260
\(319\) 4.73137 0.264906
\(320\) 25.9884 1.45279
\(321\) 5.78894 0.323107
\(322\) 68.4137 3.81255
\(323\) −31.2115 −1.73665
\(324\) −34.1438 −1.89688
\(325\) −2.77166 −0.153744
\(326\) −9.49938 −0.526122
\(327\) 3.73671 0.206641
\(328\) −16.5420 −0.913377
\(329\) 63.2480 3.48698
\(330\) −48.8008 −2.68639
\(331\) −26.3473 −1.44818 −0.724089 0.689706i \(-0.757740\pi\)
−0.724089 + 0.689706i \(0.757740\pi\)
\(332\) 41.3667 2.27029
\(333\) −0.920311 −0.0504327
\(334\) −30.9750 −1.69488
\(335\) 15.3241 0.837243
\(336\) −34.0504 −1.85760
\(337\) 17.1357 0.933442 0.466721 0.884405i \(-0.345435\pi\)
0.466721 + 0.884405i \(0.345435\pi\)
\(338\) −31.4710 −1.71180
\(339\) −21.6903 −1.17805
\(340\) 57.7837 3.13376
\(341\) −6.74472 −0.365247
\(342\) −2.99169 −0.161772
\(343\) 46.3847 2.50454
\(344\) −15.3536 −0.827811
\(345\) 32.7883 1.76526
\(346\) 20.4569 1.09977
\(347\) 17.7415 0.952416 0.476208 0.879333i \(-0.342011\pi\)
0.476208 + 0.879333i \(0.342011\pi\)
\(348\) 9.21858 0.494168
\(349\) −29.8296 −1.59674 −0.798372 0.602164i \(-0.794305\pi\)
−0.798372 + 0.602164i \(0.794305\pi\)
\(350\) 77.5141 4.14330
\(351\) −2.27065 −0.121198
\(352\) −0.952098 −0.0507470
\(353\) 3.33018 0.177248 0.0886239 0.996065i \(-0.471753\pi\)
0.0886239 + 0.996065i \(0.471753\pi\)
\(354\) 31.0646 1.65106
\(355\) 10.0870 0.535363
\(356\) 12.8413 0.680586
\(357\) 34.5648 1.82936
\(358\) −39.2767 −2.07584
\(359\) 12.3715 0.652941 0.326470 0.945207i \(-0.394141\pi\)
0.326470 + 0.945207i \(0.394141\pi\)
\(360\) 2.78837 0.146960
\(361\) 35.4517 1.86588
\(362\) 29.3870 1.54455
\(363\) −1.87552 −0.0984394
\(364\) −8.32922 −0.436570
\(365\) −46.0638 −2.41109
\(366\) −56.6406 −2.96065
\(367\) 1.46809 0.0766338 0.0383169 0.999266i \(-0.487800\pi\)
0.0383169 + 0.999266i \(0.487800\pi\)
\(368\) 23.9225 1.24705
\(369\) 0.548723 0.0285654
\(370\) −46.4104 −2.41276
\(371\) 13.0497 0.677507
\(372\) −13.1414 −0.681349
\(373\) 2.17868 0.112808 0.0564040 0.998408i \(-0.482037\pi\)
0.0564040 + 0.998408i \(0.482037\pi\)
\(374\) 36.1431 1.86892
\(375\) 8.59500 0.443844
\(376\) 64.8722 3.34553
\(377\) 0.579211 0.0298309
\(378\) 63.5026 3.26622
\(379\) −33.9374 −1.74325 −0.871623 0.490178i \(-0.836932\pi\)
−0.871623 + 0.490178i \(0.836932\pi\)
\(380\) −100.810 −5.17143
\(381\) 29.3646 1.50440
\(382\) −6.38737 −0.326806
\(383\) 14.0581 0.718337 0.359169 0.933273i \(-0.383060\pi\)
0.359169 + 0.933273i \(0.383060\pi\)
\(384\) 32.5933 1.66327
\(385\) 57.2987 2.92021
\(386\) −19.4400 −0.989468
\(387\) 0.509304 0.0258894
\(388\) 43.4378 2.20522
\(389\) −22.7645 −1.15420 −0.577102 0.816672i \(-0.695817\pi\)
−0.577102 + 0.816672i \(0.695817\pi\)
\(390\) −5.97415 −0.302513
\(391\) −24.2839 −1.22809
\(392\) 82.4231 4.16299
\(393\) 23.4728 1.18405
\(394\) 11.9949 0.604293
\(395\) 37.3288 1.87822
\(396\) 2.31490 0.116328
\(397\) −21.7040 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(398\) 34.0886 1.70870
\(399\) −60.3019 −3.01887
\(400\) 27.1047 1.35523
\(401\) 21.6302 1.08016 0.540080 0.841614i \(-0.318394\pi\)
0.540080 + 0.841614i \(0.318394\pi\)
\(402\) 18.6755 0.931447
\(403\) −0.825683 −0.0411302
\(404\) −20.1270 −1.00136
\(405\) 28.7543 1.42881
\(406\) −16.1986 −0.803924
\(407\) −19.3973 −0.961486
\(408\) 35.4524 1.75516
\(409\) 16.2837 0.805177 0.402588 0.915381i \(-0.368111\pi\)
0.402588 + 0.915381i \(0.368111\pi\)
\(410\) 27.6716 1.36660
\(411\) −29.3545 −1.44795
\(412\) 71.8716 3.54086
\(413\) −36.4740 −1.79477
\(414\) −2.32767 −0.114399
\(415\) −34.8370 −1.71008
\(416\) −0.116555 −0.00571459
\(417\) −34.7605 −1.70223
\(418\) −63.0555 −3.08414
\(419\) −22.5997 −1.10407 −0.552034 0.833821i \(-0.686148\pi\)
−0.552034 + 0.833821i \(0.686148\pi\)
\(420\) 111.640 5.44750
\(421\) −10.7229 −0.522601 −0.261301 0.965257i \(-0.584151\pi\)
−0.261301 + 0.965257i \(0.584151\pi\)
\(422\) 26.5010 1.29005
\(423\) −2.15191 −0.104630
\(424\) 13.3848 0.650024
\(425\) −27.5142 −1.33463
\(426\) 12.2931 0.595601
\(427\) 66.5037 3.21834
\(428\) −13.8480 −0.669366
\(429\) −2.49690 −0.120551
\(430\) 25.6837 1.23858
\(431\) 10.5556 0.508448 0.254224 0.967145i \(-0.418180\pi\)
0.254224 + 0.967145i \(0.418180\pi\)
\(432\) 22.2052 1.06835
\(433\) −9.28043 −0.445989 −0.222994 0.974820i \(-0.571583\pi\)
−0.222994 + 0.974820i \(0.571583\pi\)
\(434\) 23.0916 1.10843
\(435\) −7.76344 −0.372228
\(436\) −8.93875 −0.428089
\(437\) 42.3658 2.02663
\(438\) −56.1380 −2.68238
\(439\) −2.40958 −0.115003 −0.0575014 0.998345i \(-0.518313\pi\)
−0.0575014 + 0.998345i \(0.518313\pi\)
\(440\) 58.7701 2.80175
\(441\) −2.73411 −0.130195
\(442\) 4.42462 0.210458
\(443\) 4.00274 0.190176 0.0950879 0.995469i \(-0.469687\pi\)
0.0950879 + 0.995469i \(0.469687\pi\)
\(444\) −37.7935 −1.79360
\(445\) −10.8143 −0.512647
\(446\) −20.7607 −0.983046
\(447\) −18.5394 −0.876883
\(448\) −37.1873 −1.75694
\(449\) 22.6782 1.07025 0.535125 0.844773i \(-0.320265\pi\)
0.535125 + 0.844773i \(0.320265\pi\)
\(450\) −2.63729 −0.124323
\(451\) 11.5653 0.544591
\(452\) 51.8862 2.44052
\(453\) −36.8838 −1.73295
\(454\) −20.6634 −0.969781
\(455\) 7.01446 0.328843
\(456\) −61.8504 −2.89641
\(457\) 4.48023 0.209576 0.104788 0.994495i \(-0.466584\pi\)
0.104788 + 0.994495i \(0.466584\pi\)
\(458\) −47.5069 −2.21985
\(459\) −22.5407 −1.05211
\(460\) −78.4343 −3.65702
\(461\) −13.5759 −0.632292 −0.316146 0.948710i \(-0.602389\pi\)
−0.316146 + 0.948710i \(0.602389\pi\)
\(462\) 69.8300 3.24879
\(463\) −39.1044 −1.81734 −0.908668 0.417520i \(-0.862899\pi\)
−0.908668 + 0.417520i \(0.862899\pi\)
\(464\) −5.66424 −0.262956
\(465\) 11.0670 0.513221
\(466\) −4.23989 −0.196409
\(467\) 36.9311 1.70897 0.854483 0.519479i \(-0.173874\pi\)
0.854483 + 0.519479i \(0.173874\pi\)
\(468\) 0.283388 0.0130996
\(469\) −21.9275 −1.01252
\(470\) −108.519 −5.00561
\(471\) 21.2009 0.976885
\(472\) −37.4106 −1.72196
\(473\) 10.7345 0.493574
\(474\) 45.4927 2.08955
\(475\) 48.0013 2.20245
\(476\) −82.6839 −3.78981
\(477\) −0.443996 −0.0203292
\(478\) 2.09046 0.0956154
\(479\) −9.60238 −0.438744 −0.219372 0.975641i \(-0.570401\pi\)
−0.219372 + 0.975641i \(0.570401\pi\)
\(480\) 1.56224 0.0713064
\(481\) −2.37460 −0.108272
\(482\) −73.1351 −3.33121
\(483\) −46.9175 −2.13482
\(484\) 4.48652 0.203933
\(485\) −36.5812 −1.66107
\(486\) −4.20843 −0.190898
\(487\) −7.82233 −0.354464 −0.177232 0.984169i \(-0.556714\pi\)
−0.177232 + 0.984169i \(0.556714\pi\)
\(488\) 68.2114 3.08779
\(489\) 6.51459 0.294600
\(490\) −137.878 −6.22871
\(491\) −31.0270 −1.40023 −0.700114 0.714031i \(-0.746867\pi\)
−0.700114 + 0.714031i \(0.746867\pi\)
\(492\) 22.5339 1.01591
\(493\) 5.74981 0.258958
\(494\) −7.71920 −0.347303
\(495\) −1.94950 −0.0876234
\(496\) 8.07456 0.362558
\(497\) −14.4337 −0.647441
\(498\) −42.4560 −1.90250
\(499\) −38.2468 −1.71216 −0.856080 0.516843i \(-0.827107\pi\)
−0.856080 + 0.516843i \(0.827107\pi\)
\(500\) −20.5605 −0.919492
\(501\) 21.2424 0.949039
\(502\) 61.2265 2.73267
\(503\) 4.97067 0.221631 0.110816 0.993841i \(-0.464654\pi\)
0.110816 + 0.993841i \(0.464654\pi\)
\(504\) −3.98994 −0.177726
\(505\) 16.9500 0.754265
\(506\) −49.0599 −2.18098
\(507\) 21.5825 0.958513
\(508\) −70.2444 −3.11659
\(509\) −18.1195 −0.803134 −0.401567 0.915830i \(-0.631534\pi\)
−0.401567 + 0.915830i \(0.631534\pi\)
\(510\) −59.3052 −2.62608
\(511\) 65.9136 2.91585
\(512\) −40.3458 −1.78305
\(513\) 39.3246 1.73622
\(514\) 26.2442 1.15758
\(515\) −60.5268 −2.66713
\(516\) 20.9151 0.920735
\(517\) −45.3555 −1.99473
\(518\) 66.4096 2.91787
\(519\) −14.0292 −0.615813
\(520\) 7.19459 0.315503
\(521\) −41.9498 −1.83786 −0.918928 0.394426i \(-0.870943\pi\)
−0.918928 + 0.394426i \(0.870943\pi\)
\(522\) 0.551132 0.0241224
\(523\) 25.5330 1.11648 0.558239 0.829680i \(-0.311477\pi\)
0.558239 + 0.829680i \(0.311477\pi\)
\(524\) −56.1503 −2.45294
\(525\) −53.1585 −2.32003
\(526\) 43.5337 1.89816
\(527\) −8.19654 −0.357047
\(528\) 24.4178 1.06265
\(529\) 9.96243 0.433149
\(530\) −22.3903 −0.972573
\(531\) 1.24097 0.0538535
\(532\) 144.251 6.25406
\(533\) 1.41582 0.0613260
\(534\) −13.1794 −0.570329
\(535\) 11.6621 0.504195
\(536\) −22.4906 −0.971446
\(537\) 26.9356 1.16236
\(538\) −27.2193 −1.17351
\(539\) −57.6263 −2.48214
\(540\) −72.8039 −3.13298
\(541\) 39.2494 1.68746 0.843732 0.536764i \(-0.180354\pi\)
0.843732 + 0.536764i \(0.180354\pi\)
\(542\) −18.7151 −0.803881
\(543\) −20.1533 −0.864863
\(544\) −1.15704 −0.0496077
\(545\) 7.52778 0.322455
\(546\) 8.54853 0.365844
\(547\) 9.71122 0.415222 0.207611 0.978211i \(-0.433431\pi\)
0.207611 + 0.978211i \(0.433431\pi\)
\(548\) 70.2202 2.99966
\(549\) −2.26268 −0.0965689
\(550\) −55.5859 −2.37019
\(551\) −10.0311 −0.427341
\(552\) −48.1223 −2.04822
\(553\) −53.4146 −2.27142
\(554\) −25.9727 −1.10347
\(555\) 31.8278 1.35102
\(556\) 83.1522 3.52644
\(557\) −21.9292 −0.929169 −0.464584 0.885529i \(-0.653796\pi\)
−0.464584 + 0.885529i \(0.653796\pi\)
\(558\) −0.785657 −0.0332595
\(559\) 1.31411 0.0555810
\(560\) −68.5961 −2.89871
\(561\) −24.7866 −1.04649
\(562\) 2.22874 0.0940138
\(563\) −20.3681 −0.858413 −0.429207 0.903206i \(-0.641207\pi\)
−0.429207 + 0.903206i \(0.641207\pi\)
\(564\) −88.3705 −3.72107
\(565\) −43.6961 −1.83831
\(566\) −64.7366 −2.72108
\(567\) −41.1451 −1.72793
\(568\) −14.8044 −0.621178
\(569\) 10.1505 0.425530 0.212765 0.977103i \(-0.431753\pi\)
0.212765 + 0.977103i \(0.431753\pi\)
\(570\) 103.464 4.33364
\(571\) −22.4729 −0.940462 −0.470231 0.882543i \(-0.655829\pi\)
−0.470231 + 0.882543i \(0.655829\pi\)
\(572\) 5.97293 0.249741
\(573\) 4.38040 0.182994
\(574\) −39.5959 −1.65270
\(575\) 37.3471 1.55748
\(576\) 1.26524 0.0527183
\(577\) 4.10618 0.170943 0.0854713 0.996341i \(-0.472760\pi\)
0.0854713 + 0.996341i \(0.472760\pi\)
\(578\) 2.18584 0.0909188
\(579\) 13.3318 0.554049
\(580\) 18.5713 0.771129
\(581\) 49.8490 2.06809
\(582\) −44.5816 −1.84797
\(583\) −9.35803 −0.387570
\(584\) 67.6063 2.79757
\(585\) −0.238656 −0.00986721
\(586\) −26.8301 −1.10834
\(587\) 22.9876 0.948798 0.474399 0.880310i \(-0.342665\pi\)
0.474399 + 0.880310i \(0.342665\pi\)
\(588\) −112.279 −4.63030
\(589\) 14.2997 0.589209
\(590\) 62.5810 2.57642
\(591\) −8.22598 −0.338371
\(592\) 23.2218 0.954408
\(593\) 1.78019 0.0731037 0.0365518 0.999332i \(-0.488363\pi\)
0.0365518 + 0.999332i \(0.488363\pi\)
\(594\) −45.5381 −1.86845
\(595\) 69.6324 2.85465
\(596\) 44.3489 1.81660
\(597\) −23.3776 −0.956782
\(598\) −6.00587 −0.245598
\(599\) −9.79284 −0.400124 −0.200062 0.979783i \(-0.564114\pi\)
−0.200062 + 0.979783i \(0.564114\pi\)
\(600\) −54.5235 −2.22591
\(601\) 38.0291 1.55124 0.775619 0.631201i \(-0.217438\pi\)
0.775619 + 0.631201i \(0.217438\pi\)
\(602\) −36.7514 −1.49787
\(603\) 0.746049 0.0303815
\(604\) 88.2313 3.59008
\(605\) −3.77833 −0.153611
\(606\) 20.6570 0.839133
\(607\) −8.30354 −0.337030 −0.168515 0.985699i \(-0.553897\pi\)
−0.168515 + 0.985699i \(0.553897\pi\)
\(608\) 2.01858 0.0818641
\(609\) 11.1089 0.450154
\(610\) −114.105 −4.61998
\(611\) −5.55239 −0.224626
\(612\) 2.81319 0.113716
\(613\) −25.6858 −1.03744 −0.518720 0.854944i \(-0.673591\pi\)
−0.518720 + 0.854944i \(0.673591\pi\)
\(614\) 42.3863 1.71057
\(615\) −18.9769 −0.765224
\(616\) −84.0953 −3.38830
\(617\) 5.44989 0.219404 0.109702 0.993964i \(-0.465010\pi\)
0.109702 + 0.993964i \(0.465010\pi\)
\(618\) −73.7641 −2.96723
\(619\) −3.76621 −0.151377 −0.0756885 0.997132i \(-0.524115\pi\)
−0.0756885 + 0.997132i \(0.524115\pi\)
\(620\) −26.4739 −1.06322
\(621\) 30.5962 1.22778
\(622\) −12.9147 −0.517834
\(623\) 15.4744 0.619969
\(624\) 2.98920 0.119664
\(625\) −15.2100 −0.608399
\(626\) 30.0837 1.20238
\(627\) 43.2429 1.72695
\(628\) −50.7155 −2.02377
\(629\) −23.5726 −0.939899
\(630\) 6.67442 0.265915
\(631\) −42.3230 −1.68485 −0.842427 0.538810i \(-0.818874\pi\)
−0.842427 + 0.538810i \(0.818874\pi\)
\(632\) −54.7862 −2.17928
\(633\) −18.1742 −0.722359
\(634\) 64.2958 2.55351
\(635\) 59.1564 2.34755
\(636\) −18.2331 −0.722991
\(637\) −7.05457 −0.279512
\(638\) 11.6161 0.459887
\(639\) 0.491085 0.0194270
\(640\) 65.6606 2.59546
\(641\) −14.9924 −0.592163 −0.296082 0.955163i \(-0.595680\pi\)
−0.296082 + 0.955163i \(0.595680\pi\)
\(642\) 14.2126 0.560926
\(643\) −2.76592 −0.109077 −0.0545386 0.998512i \(-0.517369\pi\)
−0.0545386 + 0.998512i \(0.517369\pi\)
\(644\) 112.233 4.42261
\(645\) −17.6137 −0.693537
\(646\) −76.6283 −3.01490
\(647\) −23.5620 −0.926319 −0.463159 0.886275i \(-0.653284\pi\)
−0.463159 + 0.886275i \(0.653284\pi\)
\(648\) −42.2017 −1.65784
\(649\) 26.1557 1.02670
\(650\) −6.80478 −0.266905
\(651\) −15.8360 −0.620663
\(652\) −15.5838 −0.610309
\(653\) −11.5492 −0.451957 −0.225978 0.974132i \(-0.572558\pi\)
−0.225978 + 0.974132i \(0.572558\pi\)
\(654\) 9.17412 0.358737
\(655\) 47.2871 1.84766
\(656\) −13.8457 −0.540582
\(657\) −2.24261 −0.0874925
\(658\) 155.282 6.05353
\(659\) −23.0029 −0.896065 −0.448033 0.894017i \(-0.647875\pi\)
−0.448033 + 0.894017i \(0.647875\pi\)
\(660\) −80.0581 −3.11626
\(661\) −38.7427 −1.50692 −0.753459 0.657495i \(-0.771616\pi\)
−0.753459 + 0.657495i \(0.771616\pi\)
\(662\) −64.6861 −2.51410
\(663\) −3.03436 −0.117845
\(664\) 51.1291 1.98419
\(665\) −121.481 −4.71083
\(666\) −2.25948 −0.0875532
\(667\) −7.80466 −0.302198
\(668\) −50.8147 −1.96608
\(669\) 14.2375 0.550453
\(670\) 37.6225 1.45349
\(671\) −47.6902 −1.84106
\(672\) −2.23545 −0.0862343
\(673\) 1.09656 0.0422692 0.0211346 0.999777i \(-0.493272\pi\)
0.0211346 + 0.999777i \(0.493272\pi\)
\(674\) 42.0704 1.62049
\(675\) 34.6662 1.33430
\(676\) −51.6284 −1.98571
\(677\) 14.8640 0.571269 0.285634 0.958339i \(-0.407796\pi\)
0.285634 + 0.958339i \(0.407796\pi\)
\(678\) −53.2525 −2.04515
\(679\) 52.3448 2.00881
\(680\) 71.4205 2.73885
\(681\) 14.1708 0.543025
\(682\) −16.5592 −0.634083
\(683\) 7.91661 0.302921 0.151460 0.988463i \(-0.451602\pi\)
0.151460 + 0.988463i \(0.451602\pi\)
\(684\) −4.90790 −0.187658
\(685\) −59.1360 −2.25947
\(686\) 113.880 4.34798
\(687\) 32.5798 1.24300
\(688\) −12.8510 −0.489940
\(689\) −1.14560 −0.0436440
\(690\) 80.4996 3.06457
\(691\) 17.8706 0.679829 0.339914 0.940456i \(-0.389602\pi\)
0.339914 + 0.940456i \(0.389602\pi\)
\(692\) 33.5598 1.27575
\(693\) 2.78958 0.105967
\(694\) 43.5578 1.65343
\(695\) −70.0267 −2.65626
\(696\) 11.3941 0.431894
\(697\) 14.0548 0.532364
\(698\) −73.2357 −2.77201
\(699\) 2.90768 0.109978
\(700\) 127.163 4.80629
\(701\) 42.3565 1.59978 0.799892 0.600144i \(-0.204890\pi\)
0.799892 + 0.600144i \(0.204890\pi\)
\(702\) −5.57474 −0.210405
\(703\) 41.1248 1.55105
\(704\) 26.6673 1.00506
\(705\) 74.4214 2.80287
\(706\) 8.17604 0.307709
\(707\) −24.2541 −0.912169
\(708\) 50.9617 1.91526
\(709\) 24.1365 0.906467 0.453233 0.891392i \(-0.350270\pi\)
0.453233 + 0.891392i \(0.350270\pi\)
\(710\) 24.7649 0.929412
\(711\) 1.81735 0.0681558
\(712\) 15.8718 0.594820
\(713\) 11.1258 0.416664
\(714\) 84.8611 3.17585
\(715\) −5.03011 −0.188116
\(716\) −64.4338 −2.40800
\(717\) −1.43362 −0.0535394
\(718\) 30.3736 1.13353
\(719\) −21.3950 −0.797901 −0.398950 0.916973i \(-0.630625\pi\)
−0.398950 + 0.916973i \(0.630625\pi\)
\(720\) 2.33387 0.0869784
\(721\) 86.6090 3.22549
\(722\) 87.0385 3.23924
\(723\) 50.1554 1.86530
\(724\) 48.2097 1.79170
\(725\) −8.84284 −0.328415
\(726\) −4.60465 −0.170895
\(727\) −3.36788 −0.124908 −0.0624538 0.998048i \(-0.519893\pi\)
−0.0624538 + 0.998048i \(0.519893\pi\)
\(728\) −10.2949 −0.381554
\(729\) 28.3181 1.04882
\(730\) −113.093 −4.18575
\(731\) 13.0452 0.482492
\(732\) −92.9194 −3.43440
\(733\) 3.98604 0.147228 0.0736139 0.997287i \(-0.476547\pi\)
0.0736139 + 0.997287i \(0.476547\pi\)
\(734\) 3.60436 0.133039
\(735\) 94.5557 3.48774
\(736\) 1.57054 0.0578909
\(737\) 15.7244 0.579214
\(738\) 1.34719 0.0495906
\(739\) 49.4424 1.81877 0.909385 0.415956i \(-0.136553\pi\)
0.909385 + 0.415956i \(0.136553\pi\)
\(740\) −76.1367 −2.79884
\(741\) 5.29376 0.194471
\(742\) 32.0387 1.17618
\(743\) −18.2597 −0.669884 −0.334942 0.942239i \(-0.608717\pi\)
−0.334942 + 0.942239i \(0.608717\pi\)
\(744\) −16.2427 −0.595486
\(745\) −37.3485 −1.36834
\(746\) 5.34895 0.195839
\(747\) −1.69603 −0.0620547
\(748\) 59.2932 2.16797
\(749\) −16.6875 −0.609748
\(750\) 21.1019 0.770531
\(751\) 49.9351 1.82216 0.911079 0.412231i \(-0.135250\pi\)
0.911079 + 0.412231i \(0.135250\pi\)
\(752\) 54.2982 1.98005
\(753\) −41.9886 −1.53015
\(754\) 1.42204 0.0517876
\(755\) −74.3041 −2.70420
\(756\) 104.177 3.78887
\(757\) −27.7753 −1.00951 −0.504755 0.863263i \(-0.668417\pi\)
−0.504755 + 0.863263i \(0.668417\pi\)
\(758\) −83.3206 −3.02634
\(759\) 33.6448 1.22123
\(760\) −124.600 −4.51973
\(761\) 8.08376 0.293036 0.146518 0.989208i \(-0.453193\pi\)
0.146518 + 0.989208i \(0.453193\pi\)
\(762\) 72.0940 2.61169
\(763\) −10.7717 −0.389960
\(764\) −10.4785 −0.379100
\(765\) −2.36913 −0.0856561
\(766\) 34.5146 1.24706
\(767\) 3.20196 0.115616
\(768\) 54.2199 1.95649
\(769\) 8.00443 0.288647 0.144324 0.989531i \(-0.453899\pi\)
0.144324 + 0.989531i \(0.453899\pi\)
\(770\) 140.676 5.06960
\(771\) −17.9980 −0.648183
\(772\) −31.8915 −1.14780
\(773\) 51.7562 1.86154 0.930771 0.365603i \(-0.119137\pi\)
0.930771 + 0.365603i \(0.119137\pi\)
\(774\) 1.25041 0.0449450
\(775\) 12.6058 0.452812
\(776\) 53.6890 1.92732
\(777\) −45.5431 −1.63385
\(778\) −55.8897 −2.00374
\(779\) −24.5201 −0.878523
\(780\) −9.80065 −0.350920
\(781\) 10.3505 0.370371
\(782\) −59.6202 −2.13201
\(783\) −7.24441 −0.258894
\(784\) 68.9883 2.46387
\(785\) 42.7102 1.52439
\(786\) 57.6288 2.05555
\(787\) 38.6301 1.37702 0.688508 0.725229i \(-0.258266\pi\)
0.688508 + 0.725229i \(0.258266\pi\)
\(788\) 19.6777 0.700989
\(789\) −29.8550 −1.06287
\(790\) 91.6471 3.26066
\(791\) 62.5256 2.22315
\(792\) 2.86121 0.101669
\(793\) −5.83820 −0.207321
\(794\) −53.2861 −1.89105
\(795\) 15.3551 0.544588
\(796\) 55.9226 1.98212
\(797\) −46.6619 −1.65285 −0.826424 0.563048i \(-0.809629\pi\)
−0.826424 + 0.563048i \(0.809629\pi\)
\(798\) −148.049 −5.24088
\(799\) −55.1184 −1.94995
\(800\) 1.77945 0.0629132
\(801\) −0.526492 −0.0186027
\(802\) 53.1049 1.87520
\(803\) −47.2671 −1.66802
\(804\) 30.6373 1.08049
\(805\) −94.5174 −3.33130
\(806\) −2.02716 −0.0714037
\(807\) 18.6667 0.657100
\(808\) −24.8769 −0.875167
\(809\) 26.5733 0.934267 0.467133 0.884187i \(-0.345287\pi\)
0.467133 + 0.884187i \(0.345287\pi\)
\(810\) 70.5955 2.48047
\(811\) 32.5016 1.14129 0.570644 0.821198i \(-0.306694\pi\)
0.570644 + 0.821198i \(0.306694\pi\)
\(812\) −26.5740 −0.932564
\(813\) 12.8346 0.450130
\(814\) −47.6228 −1.66918
\(815\) 13.1239 0.459711
\(816\) 29.6738 1.03879
\(817\) −22.7586 −0.796223
\(818\) 39.9786 1.39782
\(819\) 0.341498 0.0119329
\(820\) 45.3955 1.58528
\(821\) −43.7002 −1.52515 −0.762573 0.646902i \(-0.776064\pi\)
−0.762573 + 0.646902i \(0.776064\pi\)
\(822\) −72.0692 −2.51370
\(823\) 32.0137 1.11593 0.557964 0.829865i \(-0.311583\pi\)
0.557964 + 0.829865i \(0.311583\pi\)
\(824\) 88.8331 3.09465
\(825\) 38.1203 1.32718
\(826\) −89.5484 −3.11579
\(827\) −24.0050 −0.834735 −0.417368 0.908738i \(-0.637047\pi\)
−0.417368 + 0.908738i \(0.637047\pi\)
\(828\) −3.81856 −0.132704
\(829\) −46.8935 −1.62868 −0.814339 0.580390i \(-0.802900\pi\)
−0.814339 + 0.580390i \(0.802900\pi\)
\(830\) −85.5295 −2.96877
\(831\) 17.8118 0.617886
\(832\) 3.26459 0.113179
\(833\) −70.0305 −2.42641
\(834\) −85.3417 −2.95514
\(835\) 42.7937 1.48094
\(836\) −103.443 −3.57765
\(837\) 10.3271 0.356958
\(838\) −55.4853 −1.91671
\(839\) 23.7493 0.819917 0.409958 0.912104i \(-0.365543\pi\)
0.409958 + 0.912104i \(0.365543\pi\)
\(840\) 137.987 4.76101
\(841\) −27.1521 −0.936278
\(842\) −26.3261 −0.907257
\(843\) −1.52845 −0.0526426
\(844\) 43.4752 1.49648
\(845\) 43.4789 1.49572
\(846\) −5.28323 −0.181641
\(847\) 5.40648 0.185769
\(848\) 11.2031 0.384717
\(849\) 44.3958 1.52366
\(850\) −67.5508 −2.31697
\(851\) 31.9969 1.09684
\(852\) 20.1669 0.690906
\(853\) 42.5399 1.45654 0.728269 0.685292i \(-0.240325\pi\)
0.728269 + 0.685292i \(0.240325\pi\)
\(854\) 163.275 5.58716
\(855\) 4.13319 0.141352
\(856\) −17.1160 −0.585014
\(857\) −3.36702 −0.115015 −0.0575076 0.998345i \(-0.518315\pi\)
−0.0575076 + 0.998345i \(0.518315\pi\)
\(858\) −6.13021 −0.209282
\(859\) −15.4734 −0.527945 −0.263972 0.964530i \(-0.585033\pi\)
−0.263972 + 0.964530i \(0.585033\pi\)
\(860\) 42.1344 1.43677
\(861\) 27.1545 0.925422
\(862\) 25.9155 0.882685
\(863\) 41.0989 1.39902 0.699511 0.714622i \(-0.253401\pi\)
0.699511 + 0.714622i \(0.253401\pi\)
\(864\) 1.45780 0.0495953
\(865\) −28.2624 −0.960951
\(866\) −22.7847 −0.774254
\(867\) −1.49903 −0.0509096
\(868\) 37.8820 1.28580
\(869\) 38.3039 1.29937
\(870\) −19.0603 −0.646203
\(871\) 1.92496 0.0652249
\(872\) −11.0483 −0.374142
\(873\) −1.78095 −0.0602760
\(874\) 104.014 3.51831
\(875\) −24.7764 −0.837596
\(876\) −92.0950 −3.11160
\(877\) 42.0576 1.42018 0.710092 0.704109i \(-0.248653\pi\)
0.710092 + 0.704109i \(0.248653\pi\)
\(878\) −5.91582 −0.199649
\(879\) 18.3999 0.620612
\(880\) 49.1907 1.65822
\(881\) 21.8530 0.736246 0.368123 0.929777i \(-0.380001\pi\)
0.368123 + 0.929777i \(0.380001\pi\)
\(882\) −6.71258 −0.226024
\(883\) −4.84112 −0.162917 −0.0814583 0.996677i \(-0.525958\pi\)
−0.0814583 + 0.996677i \(0.525958\pi\)
\(884\) 7.25862 0.244134
\(885\) −42.9175 −1.44265
\(886\) 9.82725 0.330153
\(887\) −7.88437 −0.264731 −0.132366 0.991201i \(-0.542257\pi\)
−0.132366 + 0.991201i \(0.542257\pi\)
\(888\) −46.7126 −1.56757
\(889\) −84.6481 −2.83901
\(890\) −26.5505 −0.889975
\(891\) 29.5054 0.988468
\(892\) −34.0581 −1.14035
\(893\) 96.1598 3.21787
\(894\) −45.5166 −1.52230
\(895\) 54.2630 1.81381
\(896\) −93.9551 −3.13882
\(897\) 4.11877 0.137522
\(898\) 55.6779 1.85800
\(899\) −2.63430 −0.0878590
\(900\) −4.32651 −0.144217
\(901\) −11.3724 −0.378869
\(902\) 28.3944 0.945431
\(903\) 25.2038 0.838728
\(904\) 64.1312 2.13297
\(905\) −40.5998 −1.34958
\(906\) −90.5546 −3.00847
\(907\) 37.8701 1.25746 0.628728 0.777626i \(-0.283576\pi\)
0.628728 + 0.777626i \(0.283576\pi\)
\(908\) −33.8985 −1.12496
\(909\) 0.825208 0.0273704
\(910\) 17.2214 0.570884
\(911\) 13.0667 0.432920 0.216460 0.976292i \(-0.430549\pi\)
0.216460 + 0.976292i \(0.430549\pi\)
\(912\) −51.7689 −1.71424
\(913\) −35.7471 −1.18306
\(914\) 10.9995 0.363833
\(915\) 78.2522 2.58694
\(916\) −77.9355 −2.57506
\(917\) −67.6640 −2.23446
\(918\) −55.3403 −1.82650
\(919\) −31.9778 −1.05485 −0.527425 0.849601i \(-0.676843\pi\)
−0.527425 + 0.849601i \(0.676843\pi\)
\(920\) −96.9445 −3.19617
\(921\) −29.0681 −0.957827
\(922\) −33.3306 −1.09768
\(923\) 1.26710 0.0417072
\(924\) 114.557 3.76864
\(925\) 36.2531 1.19199
\(926\) −96.0064 −3.15497
\(927\) −2.94674 −0.0967835
\(928\) −0.371864 −0.0122070
\(929\) 33.6309 1.10340 0.551698 0.834044i \(-0.313980\pi\)
0.551698 + 0.834044i \(0.313980\pi\)
\(930\) 27.1710 0.890972
\(931\) 122.175 4.00414
\(932\) −6.95557 −0.227837
\(933\) 8.85681 0.289959
\(934\) 90.6706 2.96683
\(935\) −49.9338 −1.63301
\(936\) 0.350267 0.0114488
\(937\) −11.2217 −0.366598 −0.183299 0.983057i \(-0.558678\pi\)
−0.183299 + 0.983057i \(0.558678\pi\)
\(938\) −53.8349 −1.75777
\(939\) −20.6311 −0.673270
\(940\) −178.026 −5.80658
\(941\) −40.1158 −1.30774 −0.653869 0.756608i \(-0.726855\pi\)
−0.653869 + 0.756608i \(0.726855\pi\)
\(942\) 52.0509 1.69591
\(943\) −19.0777 −0.621255
\(944\) −31.3128 −1.01914
\(945\) −87.7325 −2.85394
\(946\) 26.3546 0.856863
\(947\) −22.4602 −0.729857 −0.364929 0.931035i \(-0.618907\pi\)
−0.364929 + 0.931035i \(0.618907\pi\)
\(948\) 74.6312 2.42391
\(949\) −5.78640 −0.187835
\(950\) 117.849 3.82354
\(951\) −44.0935 −1.42983
\(952\) −102.197 −3.31222
\(953\) −13.5722 −0.439648 −0.219824 0.975540i \(-0.570548\pi\)
−0.219824 + 0.975540i \(0.570548\pi\)
\(954\) −1.09007 −0.0352922
\(955\) 8.82451 0.285555
\(956\) 3.42942 0.110915
\(957\) −7.96624 −0.257512
\(958\) −23.5751 −0.761676
\(959\) 84.6189 2.73249
\(960\) −43.7568 −1.41224
\(961\) −27.2447 −0.878862
\(962\) −5.82994 −0.187965
\(963\) 0.567766 0.0182960
\(964\) −119.979 −3.86426
\(965\) 26.8574 0.864571
\(966\) −115.189 −3.70613
\(967\) 7.77861 0.250143 0.125072 0.992148i \(-0.460084\pi\)
0.125072 + 0.992148i \(0.460084\pi\)
\(968\) 5.54532 0.178233
\(969\) 52.5510 1.68818
\(970\) −89.8117 −2.88368
\(971\) 16.7610 0.537886 0.268943 0.963156i \(-0.413326\pi\)
0.268943 + 0.963156i \(0.413326\pi\)
\(972\) −6.90397 −0.221445
\(973\) 100.203 3.21235
\(974\) −19.2048 −0.615363
\(975\) 4.66665 0.149453
\(976\) 57.0932 1.82751
\(977\) 23.5536 0.753546 0.376773 0.926306i \(-0.377034\pi\)
0.376773 + 0.926306i \(0.377034\pi\)
\(978\) 15.9942 0.511437
\(979\) −11.0968 −0.354655
\(980\) −226.191 −7.22540
\(981\) 0.366489 0.0117011
\(982\) −76.1752 −2.43085
\(983\) 47.0503 1.50067 0.750336 0.661057i \(-0.229892\pi\)
0.750336 + 0.661057i \(0.229892\pi\)
\(984\) 27.8518 0.887882
\(985\) −16.5716 −0.528015
\(986\) 14.1165 0.449562
\(987\) −106.491 −3.38965
\(988\) −12.6634 −0.402877
\(989\) −17.7072 −0.563056
\(990\) −4.78627 −0.152118
\(991\) 30.7486 0.976761 0.488380 0.872631i \(-0.337588\pi\)
0.488380 + 0.872631i \(0.337588\pi\)
\(992\) 0.530104 0.0168308
\(993\) 44.3611 1.40776
\(994\) −35.4367 −1.12398
\(995\) −47.0953 −1.49302
\(996\) −69.6494 −2.20693
\(997\) 42.3465 1.34113 0.670563 0.741852i \(-0.266052\pi\)
0.670563 + 0.741852i \(0.266052\pi\)
\(998\) −93.9008 −2.97238
\(999\) 29.7000 0.939666
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.b.1.163 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.b.1.163 184 1.1 even 1 trivial