Properties

Label 4001.2.a.b.1.4
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(0\)
Dimension: \(184\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.76351 q^{2} -0.782711 q^{3} +5.63697 q^{4} +4.06144 q^{5} +2.16303 q^{6} +1.66325 q^{7} -10.0508 q^{8} -2.38736 q^{9} -11.2238 q^{10} +5.36440 q^{11} -4.41212 q^{12} +4.72431 q^{13} -4.59641 q^{14} -3.17893 q^{15} +16.5015 q^{16} -0.338710 q^{17} +6.59749 q^{18} -2.39058 q^{19} +22.8942 q^{20} -1.30185 q^{21} -14.8246 q^{22} +1.52348 q^{23} +7.86687 q^{24} +11.4953 q^{25} -13.0557 q^{26} +4.21675 q^{27} +9.37571 q^{28} -2.87593 q^{29} +8.78500 q^{30} +7.10978 q^{31} -25.5004 q^{32} -4.19878 q^{33} +0.936028 q^{34} +6.75519 q^{35} -13.4575 q^{36} +7.03437 q^{37} +6.60640 q^{38} -3.69777 q^{39} -40.8207 q^{40} -7.06405 q^{41} +3.59766 q^{42} -10.7122 q^{43} +30.2390 q^{44} -9.69612 q^{45} -4.21015 q^{46} -7.82786 q^{47} -12.9159 q^{48} -4.23359 q^{49} -31.7672 q^{50} +0.265112 q^{51} +26.6308 q^{52} +13.0571 q^{53} -11.6530 q^{54} +21.7872 q^{55} -16.7170 q^{56} +1.87114 q^{57} +7.94766 q^{58} +0.352401 q^{59} -17.9195 q^{60} -2.23483 q^{61} -19.6479 q^{62} -3.97079 q^{63} +37.4676 q^{64} +19.1875 q^{65} +11.6034 q^{66} +8.18616 q^{67} -1.90930 q^{68} -1.19245 q^{69} -18.6680 q^{70} +9.16707 q^{71} +23.9949 q^{72} -9.95483 q^{73} -19.4395 q^{74} -8.99747 q^{75} -13.4757 q^{76} +8.92236 q^{77} +10.2188 q^{78} +14.1721 q^{79} +67.0198 q^{80} +3.86159 q^{81} +19.5216 q^{82} -2.57679 q^{83} -7.33847 q^{84} -1.37565 q^{85} +29.6032 q^{86} +2.25103 q^{87} -53.9165 q^{88} +15.4335 q^{89} +26.7953 q^{90} +7.85772 q^{91} +8.58783 q^{92} -5.56491 q^{93} +21.6323 q^{94} -9.70920 q^{95} +19.9595 q^{96} +2.79797 q^{97} +11.6996 q^{98} -12.8068 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9} + 46 q^{10} + 25 q^{11} + 61 q^{12} + 52 q^{13} + 28 q^{14} + 59 q^{15} + 279 q^{16} + 16 q^{17} - 2 q^{18}+ \cdots + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.76351 −1.95409 −0.977047 0.213022i \(-0.931669\pi\)
−0.977047 + 0.213022i \(0.931669\pi\)
\(3\) −0.782711 −0.451899 −0.225949 0.974139i \(-0.572548\pi\)
−0.225949 + 0.974139i \(0.572548\pi\)
\(4\) 5.63697 2.81849
\(5\) 4.06144 1.81633 0.908165 0.418613i \(-0.137484\pi\)
0.908165 + 0.418613i \(0.137484\pi\)
\(6\) 2.16303 0.883053
\(7\) 1.66325 0.628651 0.314325 0.949315i \(-0.398222\pi\)
0.314325 + 0.949315i \(0.398222\pi\)
\(8\) −10.0508 −3.55349
\(9\) −2.38736 −0.795788
\(10\) −11.2238 −3.54928
\(11\) 5.36440 1.61743 0.808714 0.588202i \(-0.200164\pi\)
0.808714 + 0.588202i \(0.200164\pi\)
\(12\) −4.41212 −1.27367
\(13\) 4.72431 1.31029 0.655144 0.755504i \(-0.272608\pi\)
0.655144 + 0.755504i \(0.272608\pi\)
\(14\) −4.59641 −1.22844
\(15\) −3.17893 −0.820797
\(16\) 16.5015 4.12538
\(17\) −0.338710 −0.0821493 −0.0410746 0.999156i \(-0.513078\pi\)
−0.0410746 + 0.999156i \(0.513078\pi\)
\(18\) 6.59749 1.55504
\(19\) −2.39058 −0.548438 −0.274219 0.961667i \(-0.588419\pi\)
−0.274219 + 0.961667i \(0.588419\pi\)
\(20\) 22.8942 5.11930
\(21\) −1.30185 −0.284086
\(22\) −14.8246 −3.16061
\(23\) 1.52348 0.317668 0.158834 0.987305i \(-0.449227\pi\)
0.158834 + 0.987305i \(0.449227\pi\)
\(24\) 7.86687 1.60582
\(25\) 11.4953 2.29905
\(26\) −13.0557 −2.56043
\(27\) 4.21675 0.811514
\(28\) 9.37571 1.77184
\(29\) −2.87593 −0.534047 −0.267024 0.963690i \(-0.586040\pi\)
−0.267024 + 0.963690i \(0.586040\pi\)
\(30\) 8.78500 1.60391
\(31\) 7.10978 1.27695 0.638477 0.769641i \(-0.279565\pi\)
0.638477 + 0.769641i \(0.279565\pi\)
\(32\) −25.5004 −4.50788
\(33\) −4.19878 −0.730913
\(34\) 0.936028 0.160527
\(35\) 6.75519 1.14184
\(36\) −13.4575 −2.24292
\(37\) 7.03437 1.15644 0.578221 0.815880i \(-0.303747\pi\)
0.578221 + 0.815880i \(0.303747\pi\)
\(38\) 6.60640 1.07170
\(39\) −3.69777 −0.592117
\(40\) −40.8207 −6.45431
\(41\) −7.06405 −1.10322 −0.551610 0.834102i \(-0.685986\pi\)
−0.551610 + 0.834102i \(0.685986\pi\)
\(42\) 3.59766 0.555132
\(43\) −10.7122 −1.63359 −0.816797 0.576925i \(-0.804253\pi\)
−0.816797 + 0.576925i \(0.804253\pi\)
\(44\) 30.2390 4.55870
\(45\) −9.69612 −1.44541
\(46\) −4.21015 −0.620753
\(47\) −7.82786 −1.14181 −0.570905 0.821016i \(-0.693408\pi\)
−0.570905 + 0.821016i \(0.693408\pi\)
\(48\) −12.9159 −1.86425
\(49\) −4.23359 −0.604799
\(50\) −31.7672 −4.49256
\(51\) 0.265112 0.0371231
\(52\) 26.6308 3.69303
\(53\) 13.0571 1.79353 0.896765 0.442508i \(-0.145911\pi\)
0.896765 + 0.442508i \(0.145911\pi\)
\(54\) −11.6530 −1.58578
\(55\) 21.7872 2.93778
\(56\) −16.7170 −2.23391
\(57\) 1.87114 0.247838
\(58\) 7.94766 1.04358
\(59\) 0.352401 0.0458786 0.0229393 0.999737i \(-0.492698\pi\)
0.0229393 + 0.999737i \(0.492698\pi\)
\(60\) −17.9195 −2.31340
\(61\) −2.23483 −0.286140 −0.143070 0.989713i \(-0.545697\pi\)
−0.143070 + 0.989713i \(0.545697\pi\)
\(62\) −19.6479 −2.49529
\(63\) −3.97079 −0.500272
\(64\) 37.4676 4.68345
\(65\) 19.1875 2.37991
\(66\) 11.6034 1.42827
\(67\) 8.18616 1.00010 0.500049 0.865997i \(-0.333315\pi\)
0.500049 + 0.865997i \(0.333315\pi\)
\(68\) −1.90930 −0.231537
\(69\) −1.19245 −0.143554
\(70\) −18.6680 −2.23126
\(71\) 9.16707 1.08793 0.543965 0.839108i \(-0.316922\pi\)
0.543965 + 0.839108i \(0.316922\pi\)
\(72\) 23.9949 2.82783
\(73\) −9.95483 −1.16512 −0.582562 0.812786i \(-0.697950\pi\)
−0.582562 + 0.812786i \(0.697950\pi\)
\(74\) −19.4395 −2.25980
\(75\) −8.99747 −1.03894
\(76\) −13.4757 −1.54576
\(77\) 8.92236 1.01680
\(78\) 10.2188 1.15705
\(79\) 14.1721 1.59449 0.797245 0.603656i \(-0.206290\pi\)
0.797245 + 0.603656i \(0.206290\pi\)
\(80\) 67.0198 7.49304
\(81\) 3.86159 0.429066
\(82\) 19.5216 2.15580
\(83\) −2.57679 −0.282840 −0.141420 0.989950i \(-0.545167\pi\)
−0.141420 + 0.989950i \(0.545167\pi\)
\(84\) −7.33847 −0.800693
\(85\) −1.37565 −0.149210
\(86\) 29.6032 3.19220
\(87\) 2.25103 0.241335
\(88\) −53.9165 −5.74752
\(89\) 15.4335 1.63594 0.817972 0.575257i \(-0.195098\pi\)
0.817972 + 0.575257i \(0.195098\pi\)
\(90\) 26.7953 2.82447
\(91\) 7.85772 0.823713
\(92\) 8.58783 0.895343
\(93\) −5.56491 −0.577054
\(94\) 21.6323 2.23121
\(95\) −9.70920 −0.996143
\(96\) 19.9595 2.03711
\(97\) 2.79797 0.284091 0.142045 0.989860i \(-0.454632\pi\)
0.142045 + 0.989860i \(0.454632\pi\)
\(98\) 11.6996 1.18183
\(99\) −12.8068 −1.28713
\(100\) 64.7984 6.47984
\(101\) −4.14013 −0.411959 −0.205979 0.978556i \(-0.566038\pi\)
−0.205979 + 0.978556i \(0.566038\pi\)
\(102\) −0.732640 −0.0725421
\(103\) −1.85446 −0.182725 −0.0913627 0.995818i \(-0.529122\pi\)
−0.0913627 + 0.995818i \(0.529122\pi\)
\(104\) −47.4831 −4.65610
\(105\) −5.28737 −0.515994
\(106\) −36.0834 −3.50473
\(107\) 1.72169 0.166442 0.0832211 0.996531i \(-0.473479\pi\)
0.0832211 + 0.996531i \(0.473479\pi\)
\(108\) 23.7697 2.28724
\(109\) 9.70657 0.929721 0.464860 0.885384i \(-0.346105\pi\)
0.464860 + 0.885384i \(0.346105\pi\)
\(110\) −60.2090 −5.74070
\(111\) −5.50588 −0.522595
\(112\) 27.4462 2.59342
\(113\) −18.1225 −1.70482 −0.852410 0.522873i \(-0.824860\pi\)
−0.852410 + 0.522873i \(0.824860\pi\)
\(114\) −5.17090 −0.484299
\(115\) 6.18753 0.576990
\(116\) −16.2116 −1.50521
\(117\) −11.2786 −1.04271
\(118\) −0.973861 −0.0896512
\(119\) −0.563361 −0.0516432
\(120\) 31.9508 2.91670
\(121\) 17.7768 1.61607
\(122\) 6.17596 0.559145
\(123\) 5.52912 0.498544
\(124\) 40.0776 3.59908
\(125\) 26.3801 2.35950
\(126\) 10.9733 0.977579
\(127\) −10.3281 −0.916475 −0.458238 0.888830i \(-0.651519\pi\)
−0.458238 + 0.888830i \(0.651519\pi\)
\(128\) −52.5412 −4.64403
\(129\) 8.38456 0.738219
\(130\) −53.0247 −4.65058
\(131\) 5.47824 0.478636 0.239318 0.970941i \(-0.423076\pi\)
0.239318 + 0.970941i \(0.423076\pi\)
\(132\) −23.6684 −2.06007
\(133\) −3.97615 −0.344776
\(134\) −22.6225 −1.95429
\(135\) 17.1261 1.47398
\(136\) 3.40431 0.291917
\(137\) −9.05252 −0.773409 −0.386704 0.922204i \(-0.626387\pi\)
−0.386704 + 0.922204i \(0.626387\pi\)
\(138\) 3.29534 0.280518
\(139\) 9.89452 0.839242 0.419621 0.907699i \(-0.362163\pi\)
0.419621 + 0.907699i \(0.362163\pi\)
\(140\) 38.0788 3.21825
\(141\) 6.12695 0.515983
\(142\) −25.3333 −2.12592
\(143\) 25.3431 2.11930
\(144\) −39.3951 −3.28292
\(145\) −11.6804 −0.970006
\(146\) 27.5102 2.27676
\(147\) 3.31368 0.273308
\(148\) 39.6525 3.25942
\(149\) −7.08093 −0.580092 −0.290046 0.957013i \(-0.593671\pi\)
−0.290046 + 0.957013i \(0.593671\pi\)
\(150\) 24.8646 2.03018
\(151\) 10.4528 0.850634 0.425317 0.905044i \(-0.360163\pi\)
0.425317 + 0.905044i \(0.360163\pi\)
\(152\) 24.0273 1.94887
\(153\) 0.808624 0.0653734
\(154\) −24.6570 −1.98692
\(155\) 28.8759 2.31937
\(156\) −20.8442 −1.66887
\(157\) −17.6811 −1.41111 −0.705555 0.708656i \(-0.749302\pi\)
−0.705555 + 0.708656i \(0.749302\pi\)
\(158\) −39.1648 −3.11578
\(159\) −10.2199 −0.810493
\(160\) −103.568 −8.18780
\(161\) 2.53394 0.199702
\(162\) −10.6715 −0.838435
\(163\) −10.3629 −0.811682 −0.405841 0.913944i \(-0.633021\pi\)
−0.405841 + 0.913944i \(0.633021\pi\)
\(164\) −39.8199 −3.10941
\(165\) −17.0531 −1.32758
\(166\) 7.12098 0.552695
\(167\) −12.2731 −0.949722 −0.474861 0.880061i \(-0.657502\pi\)
−0.474861 + 0.880061i \(0.657502\pi\)
\(168\) 13.0846 1.00950
\(169\) 9.31909 0.716853
\(170\) 3.80162 0.291571
\(171\) 5.70719 0.436440
\(172\) −60.3844 −4.60426
\(173\) 2.67855 0.203646 0.101823 0.994803i \(-0.467532\pi\)
0.101823 + 0.994803i \(0.467532\pi\)
\(174\) −6.22073 −0.471592
\(175\) 19.1195 1.44530
\(176\) 88.5207 6.67250
\(177\) −0.275828 −0.0207325
\(178\) −42.6505 −3.19679
\(179\) −3.39805 −0.253982 −0.126991 0.991904i \(-0.540532\pi\)
−0.126991 + 0.991904i \(0.540532\pi\)
\(180\) −54.6568 −4.07387
\(181\) 6.63490 0.493168 0.246584 0.969121i \(-0.420692\pi\)
0.246584 + 0.969121i \(0.420692\pi\)
\(182\) −21.7149 −1.60961
\(183\) 1.74922 0.129306
\(184\) −15.3122 −1.12883
\(185\) 28.5696 2.10048
\(186\) 15.3787 1.12762
\(187\) −1.81698 −0.132871
\(188\) −44.1254 −3.21818
\(189\) 7.01352 0.510159
\(190\) 26.8314 1.94656
\(191\) 2.13831 0.154723 0.0773614 0.997003i \(-0.475350\pi\)
0.0773614 + 0.997003i \(0.475350\pi\)
\(192\) −29.3263 −2.11645
\(193\) 4.94193 0.355728 0.177864 0.984055i \(-0.443081\pi\)
0.177864 + 0.984055i \(0.443081\pi\)
\(194\) −7.73221 −0.555140
\(195\) −15.0183 −1.07548
\(196\) −23.8646 −1.70462
\(197\) −15.6568 −1.11550 −0.557751 0.830008i \(-0.688336\pi\)
−0.557751 + 0.830008i \(0.688336\pi\)
\(198\) 35.3916 2.51517
\(199\) −5.62420 −0.398689 −0.199344 0.979929i \(-0.563881\pi\)
−0.199344 + 0.979929i \(0.563881\pi\)
\(200\) −115.536 −8.16966
\(201\) −6.40740 −0.451943
\(202\) 11.4413 0.805006
\(203\) −4.78340 −0.335729
\(204\) 1.49443 0.104631
\(205\) −28.6902 −2.00381
\(206\) 5.12481 0.357063
\(207\) −3.63711 −0.252796
\(208\) 77.9582 5.40543
\(209\) −12.8241 −0.887058
\(210\) 14.6117 1.00830
\(211\) 3.22729 0.222176 0.111088 0.993811i \(-0.464567\pi\)
0.111088 + 0.993811i \(0.464567\pi\)
\(212\) 73.6024 5.05504
\(213\) −7.17517 −0.491634
\(214\) −4.75791 −0.325244
\(215\) −43.5069 −2.96715
\(216\) −42.3817 −2.88371
\(217\) 11.8254 0.802758
\(218\) −26.8242 −1.81676
\(219\) 7.79176 0.526518
\(220\) 122.814 8.28010
\(221\) −1.60017 −0.107639
\(222\) 15.2155 1.02120
\(223\) 7.22423 0.483770 0.241885 0.970305i \(-0.422234\pi\)
0.241885 + 0.970305i \(0.422234\pi\)
\(224\) −42.4137 −2.83388
\(225\) −27.4433 −1.82956
\(226\) 50.0816 3.33138
\(227\) −20.4699 −1.35864 −0.679318 0.733844i \(-0.737724\pi\)
−0.679318 + 0.733844i \(0.737724\pi\)
\(228\) 10.5475 0.698528
\(229\) 14.5928 0.964319 0.482160 0.876083i \(-0.339853\pi\)
0.482160 + 0.876083i \(0.339853\pi\)
\(230\) −17.0993 −1.12749
\(231\) −6.98363 −0.459489
\(232\) 28.9054 1.89773
\(233\) 6.75231 0.442359 0.221179 0.975233i \(-0.429009\pi\)
0.221179 + 0.975233i \(0.429009\pi\)
\(234\) 31.1686 2.03755
\(235\) −31.7923 −2.07390
\(236\) 1.98647 0.129308
\(237\) −11.0927 −0.720548
\(238\) 1.55685 0.100916
\(239\) −20.7729 −1.34368 −0.671842 0.740694i \(-0.734497\pi\)
−0.671842 + 0.740694i \(0.734497\pi\)
\(240\) −52.4572 −3.38610
\(241\) 7.74442 0.498862 0.249431 0.968393i \(-0.419756\pi\)
0.249431 + 0.968393i \(0.419756\pi\)
\(242\) −49.1263 −3.15796
\(243\) −15.6728 −1.00541
\(244\) −12.5977 −0.806482
\(245\) −17.1945 −1.09851
\(246\) −15.2798 −0.974201
\(247\) −11.2939 −0.718611
\(248\) −71.4590 −4.53765
\(249\) 2.01688 0.127815
\(250\) −72.9015 −4.61070
\(251\) −1.07922 −0.0681195 −0.0340597 0.999420i \(-0.510844\pi\)
−0.0340597 + 0.999420i \(0.510844\pi\)
\(252\) −22.3832 −1.41001
\(253\) 8.17257 0.513805
\(254\) 28.5419 1.79088
\(255\) 1.07674 0.0674278
\(256\) 70.2627 4.39142
\(257\) −21.0808 −1.31498 −0.657491 0.753462i \(-0.728382\pi\)
−0.657491 + 0.753462i \(0.728382\pi\)
\(258\) −23.1708 −1.44255
\(259\) 11.6999 0.726998
\(260\) 108.159 6.70775
\(261\) 6.86590 0.424988
\(262\) −15.1391 −0.935299
\(263\) −6.07480 −0.374588 −0.187294 0.982304i \(-0.559972\pi\)
−0.187294 + 0.982304i \(0.559972\pi\)
\(264\) 42.2011 2.59730
\(265\) 53.0305 3.25764
\(266\) 10.9881 0.673724
\(267\) −12.0800 −0.739281
\(268\) 46.1452 2.81876
\(269\) −29.7060 −1.81121 −0.905603 0.424127i \(-0.860581\pi\)
−0.905603 + 0.424127i \(0.860581\pi\)
\(270\) −47.3280 −2.88029
\(271\) 21.0614 1.27939 0.639696 0.768628i \(-0.279060\pi\)
0.639696 + 0.768628i \(0.279060\pi\)
\(272\) −5.58923 −0.338897
\(273\) −6.15033 −0.372235
\(274\) 25.0167 1.51131
\(275\) 61.6652 3.71855
\(276\) −6.72179 −0.404604
\(277\) 0.00821825 0.000493787 0 0.000246894 1.00000i \(-0.499921\pi\)
0.000246894 1.00000i \(0.499921\pi\)
\(278\) −27.3436 −1.63996
\(279\) −16.9736 −1.01618
\(280\) −67.8951 −4.05751
\(281\) −15.7183 −0.937677 −0.468839 0.883284i \(-0.655327\pi\)
−0.468839 + 0.883284i \(0.655327\pi\)
\(282\) −16.9319 −1.00828
\(283\) 16.9512 1.00765 0.503823 0.863807i \(-0.331926\pi\)
0.503823 + 0.863807i \(0.331926\pi\)
\(284\) 51.6745 3.06632
\(285\) 7.59950 0.450156
\(286\) −70.0358 −4.14130
\(287\) −11.7493 −0.693540
\(288\) 60.8788 3.58732
\(289\) −16.8853 −0.993251
\(290\) 32.2789 1.89548
\(291\) −2.19000 −0.128380
\(292\) −56.1151 −3.28389
\(293\) 25.9396 1.51541 0.757703 0.652600i \(-0.226322\pi\)
0.757703 + 0.652600i \(0.226322\pi\)
\(294\) −9.15738 −0.534069
\(295\) 1.43125 0.0833307
\(296\) −70.7010 −4.10941
\(297\) 22.6203 1.31257
\(298\) 19.5682 1.13356
\(299\) 7.19740 0.416236
\(300\) −50.7185 −2.92823
\(301\) −17.8171 −1.02696
\(302\) −28.8863 −1.66222
\(303\) 3.24053 0.186164
\(304\) −39.4482 −2.26251
\(305\) −9.07660 −0.519725
\(306\) −2.23464 −0.127746
\(307\) 9.02991 0.515364 0.257682 0.966230i \(-0.417041\pi\)
0.257682 + 0.966230i \(0.417041\pi\)
\(308\) 50.2951 2.86583
\(309\) 1.45151 0.0825734
\(310\) −79.7988 −4.53227
\(311\) 23.9710 1.35927 0.679634 0.733551i \(-0.262138\pi\)
0.679634 + 0.733551i \(0.262138\pi\)
\(312\) 37.1655 2.10408
\(313\) 27.1495 1.53458 0.767291 0.641299i \(-0.221604\pi\)
0.767291 + 0.641299i \(0.221604\pi\)
\(314\) 48.8620 2.75744
\(315\) −16.1271 −0.908659
\(316\) 79.8879 4.49405
\(317\) −29.6221 −1.66374 −0.831872 0.554967i \(-0.812731\pi\)
−0.831872 + 0.554967i \(0.812731\pi\)
\(318\) 28.2429 1.58378
\(319\) −15.4277 −0.863783
\(320\) 152.172 8.50669
\(321\) −1.34759 −0.0752150
\(322\) −7.00255 −0.390237
\(323\) 0.809715 0.0450537
\(324\) 21.7677 1.20932
\(325\) 54.3071 3.01242
\(326\) 28.6379 1.58610
\(327\) −7.59744 −0.420140
\(328\) 70.9994 3.92029
\(329\) −13.0197 −0.717800
\(330\) 47.1263 2.59422
\(331\) 1.53106 0.0841546 0.0420773 0.999114i \(-0.486602\pi\)
0.0420773 + 0.999114i \(0.486602\pi\)
\(332\) −14.5253 −0.797179
\(333\) −16.7936 −0.920283
\(334\) 33.9168 1.85585
\(335\) 33.2476 1.81651
\(336\) −21.4824 −1.17196
\(337\) −28.1458 −1.53320 −0.766600 0.642125i \(-0.778053\pi\)
−0.766600 + 0.642125i \(0.778053\pi\)
\(338\) −25.7534 −1.40080
\(339\) 14.1847 0.770406
\(340\) −7.75450 −0.420547
\(341\) 38.1397 2.06538
\(342\) −15.7719 −0.852845
\(343\) −18.6843 −1.00886
\(344\) 107.666 5.80497
\(345\) −4.84305 −0.260741
\(346\) −7.40219 −0.397944
\(347\) 23.9352 1.28491 0.642455 0.766324i \(-0.277916\pi\)
0.642455 + 0.766324i \(0.277916\pi\)
\(348\) 12.6890 0.680200
\(349\) −21.3570 −1.14321 −0.571607 0.820527i \(-0.693680\pi\)
−0.571607 + 0.820527i \(0.693680\pi\)
\(350\) −52.8369 −2.82425
\(351\) 19.9212 1.06332
\(352\) −136.795 −7.29118
\(353\) −5.01320 −0.266826 −0.133413 0.991061i \(-0.542594\pi\)
−0.133413 + 0.991061i \(0.542594\pi\)
\(354\) 0.762252 0.0405133
\(355\) 37.2314 1.97604
\(356\) 86.9981 4.61089
\(357\) 0.440949 0.0233375
\(358\) 9.39054 0.496306
\(359\) 11.1548 0.588730 0.294365 0.955693i \(-0.404892\pi\)
0.294365 + 0.955693i \(0.404892\pi\)
\(360\) 97.4537 5.13626
\(361\) −13.2851 −0.699216
\(362\) −18.3356 −0.963697
\(363\) −13.9141 −0.730301
\(364\) 44.2937 2.32162
\(365\) −40.4309 −2.11625
\(366\) −4.83399 −0.252677
\(367\) −20.7089 −1.08099 −0.540497 0.841346i \(-0.681764\pi\)
−0.540497 + 0.841346i \(0.681764\pi\)
\(368\) 25.1398 1.31050
\(369\) 16.8645 0.877929
\(370\) −78.9523 −4.10454
\(371\) 21.7172 1.12750
\(372\) −31.3692 −1.62642
\(373\) 4.96448 0.257051 0.128525 0.991706i \(-0.458976\pi\)
0.128525 + 0.991706i \(0.458976\pi\)
\(374\) 5.02123 0.259642
\(375\) −20.6480 −1.06626
\(376\) 78.6762 4.05742
\(377\) −13.5868 −0.699755
\(378\) −19.3819 −0.996898
\(379\) 16.8520 0.865627 0.432813 0.901484i \(-0.357521\pi\)
0.432813 + 0.901484i \(0.357521\pi\)
\(380\) −54.7305 −2.80761
\(381\) 8.08396 0.414154
\(382\) −5.90924 −0.302343
\(383\) −26.6989 −1.36425 −0.682126 0.731235i \(-0.738944\pi\)
−0.682126 + 0.731235i \(0.738944\pi\)
\(384\) 41.1246 2.09863
\(385\) 36.2376 1.84684
\(386\) −13.6571 −0.695126
\(387\) 25.5739 1.29999
\(388\) 15.7721 0.800706
\(389\) −25.2176 −1.27859 −0.639293 0.768964i \(-0.720773\pi\)
−0.639293 + 0.768964i \(0.720773\pi\)
\(390\) 41.5030 2.10159
\(391\) −0.516019 −0.0260962
\(392\) 42.5510 2.14915
\(393\) −4.28788 −0.216295
\(394\) 43.2678 2.17980
\(395\) 57.5592 2.89612
\(396\) −72.1914 −3.62776
\(397\) 30.2673 1.51907 0.759536 0.650465i \(-0.225426\pi\)
0.759536 + 0.650465i \(0.225426\pi\)
\(398\) 15.5425 0.779076
\(399\) 3.11217 0.155804
\(400\) 189.689 9.48445
\(401\) −21.4227 −1.06980 −0.534900 0.844915i \(-0.679651\pi\)
−0.534900 + 0.844915i \(0.679651\pi\)
\(402\) 17.7069 0.883140
\(403\) 33.5888 1.67318
\(404\) −23.3378 −1.16110
\(405\) 15.6836 0.779324
\(406\) 13.2190 0.656047
\(407\) 37.7352 1.87046
\(408\) −2.66459 −0.131917
\(409\) 19.1628 0.947537 0.473769 0.880649i \(-0.342893\pi\)
0.473769 + 0.880649i \(0.342893\pi\)
\(410\) 79.2856 3.91564
\(411\) 7.08551 0.349502
\(412\) −10.4535 −0.515009
\(413\) 0.586131 0.0288416
\(414\) 10.0512 0.493988
\(415\) −10.4655 −0.513730
\(416\) −120.472 −5.90662
\(417\) −7.74455 −0.379252
\(418\) 35.4394 1.73340
\(419\) −2.00076 −0.0977436 −0.0488718 0.998805i \(-0.515563\pi\)
−0.0488718 + 0.998805i \(0.515563\pi\)
\(420\) −29.8047 −1.45432
\(421\) 32.6067 1.58915 0.794577 0.607163i \(-0.207693\pi\)
0.794577 + 0.607163i \(0.207693\pi\)
\(422\) −8.91863 −0.434152
\(423\) 18.6879 0.908639
\(424\) −131.234 −6.37329
\(425\) −3.89356 −0.188865
\(426\) 19.8286 0.960700
\(427\) −3.71708 −0.179882
\(428\) 9.70512 0.469115
\(429\) −19.8363 −0.957707
\(430\) 120.232 5.79808
\(431\) 17.8223 0.858469 0.429235 0.903193i \(-0.358783\pi\)
0.429235 + 0.903193i \(0.358783\pi\)
\(432\) 69.5827 3.34780
\(433\) −13.8895 −0.667486 −0.333743 0.942664i \(-0.608312\pi\)
−0.333743 + 0.942664i \(0.608312\pi\)
\(434\) −32.6795 −1.56866
\(435\) 9.14240 0.438344
\(436\) 54.7157 2.62040
\(437\) −3.64201 −0.174221
\(438\) −21.5326 −1.02887
\(439\) 19.4677 0.929140 0.464570 0.885536i \(-0.346209\pi\)
0.464570 + 0.885536i \(0.346209\pi\)
\(440\) −218.978 −10.4394
\(441\) 10.1071 0.481291
\(442\) 4.42208 0.210337
\(443\) 16.8827 0.802121 0.401060 0.916052i \(-0.368642\pi\)
0.401060 + 0.916052i \(0.368642\pi\)
\(444\) −31.0365 −1.47293
\(445\) 62.6821 2.97141
\(446\) −19.9642 −0.945333
\(447\) 5.54232 0.262143
\(448\) 62.3181 2.94426
\(449\) −30.4303 −1.43609 −0.718047 0.695994i \(-0.754964\pi\)
−0.718047 + 0.695994i \(0.754964\pi\)
\(450\) 75.8399 3.57513
\(451\) −37.8944 −1.78438
\(452\) −102.156 −4.80501
\(453\) −8.18150 −0.384400
\(454\) 56.5687 2.65490
\(455\) 31.9136 1.49613
\(456\) −18.8064 −0.880691
\(457\) −29.7230 −1.39038 −0.695192 0.718824i \(-0.744681\pi\)
−0.695192 + 0.718824i \(0.744681\pi\)
\(458\) −40.3273 −1.88437
\(459\) −1.42826 −0.0666653
\(460\) 34.8789 1.62624
\(461\) 34.5537 1.60933 0.804664 0.593731i \(-0.202346\pi\)
0.804664 + 0.593731i \(0.202346\pi\)
\(462\) 19.2993 0.897885
\(463\) 7.94873 0.369409 0.184704 0.982794i \(-0.440867\pi\)
0.184704 + 0.982794i \(0.440867\pi\)
\(464\) −47.4572 −2.20315
\(465\) −22.6015 −1.04812
\(466\) −18.6601 −0.864411
\(467\) 4.59106 0.212449 0.106224 0.994342i \(-0.466124\pi\)
0.106224 + 0.994342i \(0.466124\pi\)
\(468\) −63.5774 −2.93886
\(469\) 13.6157 0.628713
\(470\) 87.8584 4.05260
\(471\) 13.8392 0.637678
\(472\) −3.54191 −0.163029
\(473\) −57.4645 −2.64222
\(474\) 30.6547 1.40802
\(475\) −27.4804 −1.26089
\(476\) −3.17565 −0.145556
\(477\) −31.1720 −1.42727
\(478\) 57.4059 2.62569
\(479\) 15.1938 0.694220 0.347110 0.937824i \(-0.387163\pi\)
0.347110 + 0.937824i \(0.387163\pi\)
\(480\) 81.0642 3.70006
\(481\) 33.2325 1.51527
\(482\) −21.4018 −0.974823
\(483\) −1.98334 −0.0902451
\(484\) 100.207 4.55488
\(485\) 11.3638 0.516002
\(486\) 43.3118 1.96466
\(487\) 13.9988 0.634345 0.317173 0.948368i \(-0.397267\pi\)
0.317173 + 0.948368i \(0.397267\pi\)
\(488\) 22.4618 1.01680
\(489\) 8.11113 0.366798
\(490\) 47.5170 2.14660
\(491\) 0.753044 0.0339844 0.0169922 0.999856i \(-0.494591\pi\)
0.0169922 + 0.999856i \(0.494591\pi\)
\(492\) 31.1675 1.40514
\(493\) 0.974108 0.0438716
\(494\) 31.2106 1.40423
\(495\) −52.0139 −2.33785
\(496\) 117.322 5.26792
\(497\) 15.2471 0.683928
\(498\) −5.57367 −0.249762
\(499\) −24.4995 −1.09675 −0.548375 0.836233i \(-0.684753\pi\)
−0.548375 + 0.836233i \(0.684753\pi\)
\(500\) 148.704 6.65023
\(501\) 9.60631 0.429178
\(502\) 2.98242 0.133112
\(503\) −38.8310 −1.73139 −0.865695 0.500572i \(-0.833123\pi\)
−0.865695 + 0.500572i \(0.833123\pi\)
\(504\) 39.9096 1.77771
\(505\) −16.8149 −0.748252
\(506\) −22.5850 −1.00402
\(507\) −7.29415 −0.323945
\(508\) −58.2195 −2.58307
\(509\) 30.7290 1.36204 0.681020 0.732265i \(-0.261537\pi\)
0.681020 + 0.732265i \(0.261537\pi\)
\(510\) −2.97557 −0.131760
\(511\) −16.5574 −0.732456
\(512\) −89.0891 −3.93722
\(513\) −10.0805 −0.445065
\(514\) 58.2569 2.56960
\(515\) −7.53177 −0.331889
\(516\) 47.2635 2.08066
\(517\) −41.9918 −1.84680
\(518\) −32.3328 −1.42062
\(519\) −2.09653 −0.0920275
\(520\) −192.849 −8.45701
\(521\) −22.3321 −0.978387 −0.489194 0.872175i \(-0.662709\pi\)
−0.489194 + 0.872175i \(0.662709\pi\)
\(522\) −18.9740 −0.830467
\(523\) −25.2009 −1.10196 −0.550980 0.834518i \(-0.685746\pi\)
−0.550980 + 0.834518i \(0.685746\pi\)
\(524\) 30.8807 1.34903
\(525\) −14.9651 −0.653129
\(526\) 16.7878 0.731981
\(527\) −2.40815 −0.104901
\(528\) −69.2862 −3.01529
\(529\) −20.6790 −0.899087
\(530\) −146.550 −6.36574
\(531\) −0.841308 −0.0365097
\(532\) −22.4134 −0.971745
\(533\) −33.3728 −1.44554
\(534\) 33.3830 1.44463
\(535\) 6.99254 0.302314
\(536\) −82.2775 −3.55384
\(537\) 2.65969 0.114774
\(538\) 82.0927 3.53927
\(539\) −22.7107 −0.978218
\(540\) 96.5391 4.15438
\(541\) −10.5358 −0.452970 −0.226485 0.974015i \(-0.572723\pi\)
−0.226485 + 0.974015i \(0.572723\pi\)
\(542\) −58.2034 −2.50005
\(543\) −5.19321 −0.222862
\(544\) 8.63726 0.370319
\(545\) 39.4226 1.68868
\(546\) 16.9965 0.727382
\(547\) 11.0105 0.470774 0.235387 0.971902i \(-0.424364\pi\)
0.235387 + 0.971902i \(0.424364\pi\)
\(548\) −51.0288 −2.17984
\(549\) 5.33534 0.227707
\(550\) −170.412 −7.26640
\(551\) 6.87516 0.292892
\(552\) 11.9850 0.510117
\(553\) 23.5718 1.00238
\(554\) −0.0227112 −0.000964907 0
\(555\) −22.3618 −0.949204
\(556\) 55.7751 2.36539
\(557\) 30.5916 1.29621 0.648104 0.761552i \(-0.275562\pi\)
0.648104 + 0.761552i \(0.275562\pi\)
\(558\) 46.9067 1.98572
\(559\) −50.6077 −2.14048
\(560\) 111.471 4.71050
\(561\) 1.42217 0.0600440
\(562\) 43.4377 1.83231
\(563\) −43.8493 −1.84803 −0.924014 0.382359i \(-0.875112\pi\)
−0.924014 + 0.382359i \(0.875112\pi\)
\(564\) 34.5375 1.45429
\(565\) −73.6033 −3.09652
\(566\) −46.8449 −1.96904
\(567\) 6.42280 0.269732
\(568\) −92.1363 −3.86595
\(569\) −28.2582 −1.18465 −0.592323 0.805700i \(-0.701789\pi\)
−0.592323 + 0.805700i \(0.701789\pi\)
\(570\) −21.0013 −0.879647
\(571\) 21.0355 0.880309 0.440155 0.897922i \(-0.354924\pi\)
0.440155 + 0.897922i \(0.354924\pi\)
\(572\) 142.858 5.97320
\(573\) −1.67368 −0.0699191
\(574\) 32.4693 1.35524
\(575\) 17.5128 0.730335
\(576\) −89.4488 −3.72703
\(577\) −12.0054 −0.499793 −0.249896 0.968273i \(-0.580397\pi\)
−0.249896 + 0.968273i \(0.580397\pi\)
\(578\) 46.6626 1.94091
\(579\) −3.86811 −0.160753
\(580\) −65.8422 −2.73395
\(581\) −4.28586 −0.177807
\(582\) 6.05209 0.250867
\(583\) 70.0435 2.90090
\(584\) 100.054 4.14026
\(585\) −45.8075 −1.89391
\(586\) −71.6842 −2.96125
\(587\) 3.53289 0.145818 0.0729091 0.997339i \(-0.476772\pi\)
0.0729091 + 0.997339i \(0.476772\pi\)
\(588\) 18.6791 0.770314
\(589\) −16.9965 −0.700330
\(590\) −3.95527 −0.162836
\(591\) 12.2548 0.504094
\(592\) 116.078 4.77076
\(593\) −28.6561 −1.17677 −0.588383 0.808582i \(-0.700235\pi\)
−0.588383 + 0.808582i \(0.700235\pi\)
\(594\) −62.5115 −2.56488
\(595\) −2.28805 −0.0938010
\(596\) −39.9150 −1.63498
\(597\) 4.40212 0.180167
\(598\) −19.8901 −0.813365
\(599\) −26.4908 −1.08238 −0.541191 0.840899i \(-0.682027\pi\)
−0.541191 + 0.840899i \(0.682027\pi\)
\(600\) 90.4317 3.69186
\(601\) 3.91365 0.159641 0.0798206 0.996809i \(-0.474565\pi\)
0.0798206 + 0.996809i \(0.474565\pi\)
\(602\) 49.2377 2.00678
\(603\) −19.5433 −0.795866
\(604\) 58.9219 2.39750
\(605\) 72.1993 2.93532
\(606\) −8.95522 −0.363781
\(607\) 23.1746 0.940627 0.470314 0.882499i \(-0.344141\pi\)
0.470314 + 0.882499i \(0.344141\pi\)
\(608\) 60.9609 2.47229
\(609\) 3.74403 0.151716
\(610\) 25.0833 1.01559
\(611\) −36.9812 −1.49610
\(612\) 4.55819 0.184254
\(613\) 32.8080 1.32510 0.662552 0.749016i \(-0.269473\pi\)
0.662552 + 0.749016i \(0.269473\pi\)
\(614\) −24.9542 −1.00707
\(615\) 22.4561 0.905519
\(616\) −89.6768 −3.61318
\(617\) 32.1439 1.29406 0.647032 0.762463i \(-0.276010\pi\)
0.647032 + 0.762463i \(0.276010\pi\)
\(618\) −4.01125 −0.161356
\(619\) 48.0341 1.93065 0.965327 0.261042i \(-0.0840662\pi\)
0.965327 + 0.261042i \(0.0840662\pi\)
\(620\) 162.773 6.53711
\(621\) 6.42414 0.257792
\(622\) −66.2439 −2.65614
\(623\) 25.6698 1.02844
\(624\) −61.0188 −2.44271
\(625\) 49.6646 1.98659
\(626\) −75.0280 −2.99872
\(627\) 10.0375 0.400860
\(628\) −99.6681 −3.97719
\(629\) −2.38261 −0.0950009
\(630\) 44.5674 1.77561
\(631\) −10.2415 −0.407708 −0.203854 0.979001i \(-0.565347\pi\)
−0.203854 + 0.979001i \(0.565347\pi\)
\(632\) −142.441 −5.66601
\(633\) −2.52603 −0.100401
\(634\) 81.8610 3.25111
\(635\) −41.9471 −1.66462
\(636\) −57.6095 −2.28436
\(637\) −20.0008 −0.792460
\(638\) 42.6345 1.68791
\(639\) −21.8851 −0.865762
\(640\) −213.393 −8.43508
\(641\) 28.3695 1.12053 0.560263 0.828315i \(-0.310700\pi\)
0.560263 + 0.828315i \(0.310700\pi\)
\(642\) 3.72407 0.146977
\(643\) 0.811429 0.0319996 0.0159998 0.999872i \(-0.494907\pi\)
0.0159998 + 0.999872i \(0.494907\pi\)
\(644\) 14.2837 0.562858
\(645\) 34.0533 1.34085
\(646\) −2.23765 −0.0880393
\(647\) 15.3549 0.603664 0.301832 0.953361i \(-0.402402\pi\)
0.301832 + 0.953361i \(0.402402\pi\)
\(648\) −38.8121 −1.52468
\(649\) 1.89042 0.0742054
\(650\) −150.078 −5.88655
\(651\) −9.25585 −0.362765
\(652\) −58.4152 −2.28771
\(653\) 43.7304 1.71130 0.855651 0.517553i \(-0.173157\pi\)
0.855651 + 0.517553i \(0.173157\pi\)
\(654\) 20.9956 0.820992
\(655\) 22.2495 0.869360
\(656\) −116.568 −4.55120
\(657\) 23.7658 0.927192
\(658\) 35.9801 1.40265
\(659\) −41.5489 −1.61852 −0.809258 0.587454i \(-0.800130\pi\)
−0.809258 + 0.587454i \(0.800130\pi\)
\(660\) −96.1277 −3.74176
\(661\) −9.19150 −0.357508 −0.178754 0.983894i \(-0.557207\pi\)
−0.178754 + 0.983894i \(0.557207\pi\)
\(662\) −4.23109 −0.164446
\(663\) 1.25247 0.0486420
\(664\) 25.8988 1.00507
\(665\) −16.1489 −0.626226
\(666\) 46.4092 1.79832
\(667\) −4.38143 −0.169650
\(668\) −69.1832 −2.67678
\(669\) −5.65449 −0.218615
\(670\) −91.8799 −3.54963
\(671\) −11.9885 −0.462811
\(672\) 33.1977 1.28063
\(673\) 39.2929 1.51463 0.757316 0.653049i \(-0.226510\pi\)
0.757316 + 0.653049i \(0.226510\pi\)
\(674\) 77.7811 2.99602
\(675\) 48.4726 1.86571
\(676\) 52.5314 2.02044
\(677\) 20.8353 0.800766 0.400383 0.916348i \(-0.368877\pi\)
0.400383 + 0.916348i \(0.368877\pi\)
\(678\) −39.1995 −1.50545
\(679\) 4.65373 0.178594
\(680\) 13.8264 0.530217
\(681\) 16.0220 0.613965
\(682\) −105.399 −4.03595
\(683\) 42.9185 1.64223 0.821116 0.570762i \(-0.193352\pi\)
0.821116 + 0.570762i \(0.193352\pi\)
\(684\) 32.1713 1.23010
\(685\) −36.7662 −1.40477
\(686\) 51.6342 1.97140
\(687\) −11.4219 −0.435774
\(688\) −176.767 −6.73919
\(689\) 61.6857 2.35004
\(690\) 13.3838 0.509512
\(691\) 15.6720 0.596190 0.298095 0.954536i \(-0.403649\pi\)
0.298095 + 0.954536i \(0.403649\pi\)
\(692\) 15.0989 0.573974
\(693\) −21.3009 −0.809154
\(694\) −66.1451 −2.51083
\(695\) 40.1860 1.52434
\(696\) −22.6246 −0.857583
\(697\) 2.39267 0.0906287
\(698\) 59.0202 2.23395
\(699\) −5.28511 −0.199901
\(700\) 107.776 4.07356
\(701\) −32.7422 −1.23666 −0.618329 0.785920i \(-0.712190\pi\)
−0.618329 + 0.785920i \(0.712190\pi\)
\(702\) −55.0525 −2.07782
\(703\) −16.8162 −0.634236
\(704\) 200.991 7.57515
\(705\) 24.8842 0.937194
\(706\) 13.8540 0.521403
\(707\) −6.88609 −0.258978
\(708\) −1.55483 −0.0584342
\(709\) −39.5594 −1.48568 −0.742842 0.669467i \(-0.766523\pi\)
−0.742842 + 0.669467i \(0.766523\pi\)
\(710\) −102.889 −3.86137
\(711\) −33.8340 −1.26888
\(712\) −155.119 −5.81332
\(713\) 10.8316 0.405648
\(714\) −1.21856 −0.0456036
\(715\) 102.929 3.84934
\(716\) −19.1547 −0.715846
\(717\) 16.2592 0.607209
\(718\) −30.8265 −1.15043
\(719\) −31.1541 −1.16185 −0.580926 0.813956i \(-0.697310\pi\)
−0.580926 + 0.813956i \(0.697310\pi\)
\(720\) −160.001 −5.96287
\(721\) −3.08444 −0.114870
\(722\) 36.7135 1.36633
\(723\) −6.06164 −0.225435
\(724\) 37.4007 1.38999
\(725\) −33.0596 −1.22780
\(726\) 38.4517 1.42708
\(727\) 11.0199 0.408705 0.204352 0.978897i \(-0.434491\pi\)
0.204352 + 0.978897i \(0.434491\pi\)
\(728\) −78.9763 −2.92706
\(729\) 0.682478 0.0252770
\(730\) 111.731 4.13535
\(731\) 3.62833 0.134199
\(732\) 9.86033 0.364448
\(733\) −6.99113 −0.258223 −0.129112 0.991630i \(-0.541213\pi\)
−0.129112 + 0.991630i \(0.541213\pi\)
\(734\) 57.2291 2.11237
\(735\) 13.4583 0.496417
\(736\) −38.8495 −1.43201
\(737\) 43.9139 1.61759
\(738\) −46.6051 −1.71556
\(739\) 14.2422 0.523906 0.261953 0.965081i \(-0.415633\pi\)
0.261953 + 0.965081i \(0.415633\pi\)
\(740\) 161.046 5.92017
\(741\) 8.83983 0.324739
\(742\) −60.0158 −2.20325
\(743\) −13.4898 −0.494891 −0.247446 0.968902i \(-0.579591\pi\)
−0.247446 + 0.968902i \(0.579591\pi\)
\(744\) 55.9317 2.05056
\(745\) −28.7587 −1.05364
\(746\) −13.7194 −0.502302
\(747\) 6.15174 0.225080
\(748\) −10.2422 −0.374494
\(749\) 2.86361 0.104634
\(750\) 57.0608 2.08357
\(751\) −27.4570 −1.00192 −0.500959 0.865471i \(-0.667019\pi\)
−0.500959 + 0.865471i \(0.667019\pi\)
\(752\) −129.171 −4.71040
\(753\) 0.844714 0.0307831
\(754\) 37.5472 1.36739
\(755\) 42.4532 1.54503
\(756\) 39.5350 1.43788
\(757\) −44.9270 −1.63290 −0.816449 0.577417i \(-0.804061\pi\)
−0.816449 + 0.577417i \(0.804061\pi\)
\(758\) −46.5705 −1.69152
\(759\) −6.39676 −0.232188
\(760\) 97.5852 3.53979
\(761\) 0.783707 0.0284094 0.0142047 0.999899i \(-0.495478\pi\)
0.0142047 + 0.999899i \(0.495478\pi\)
\(762\) −22.3401 −0.809296
\(763\) 16.1445 0.584469
\(764\) 12.0536 0.436084
\(765\) 3.28417 0.118740
\(766\) 73.7827 2.66588
\(767\) 1.66485 0.0601142
\(768\) −54.9954 −1.98448
\(769\) 42.6574 1.53827 0.769133 0.639089i \(-0.220689\pi\)
0.769133 + 0.639089i \(0.220689\pi\)
\(770\) −100.143 −3.60890
\(771\) 16.5002 0.594239
\(772\) 27.8575 1.00261
\(773\) 30.8780 1.11061 0.555303 0.831648i \(-0.312602\pi\)
0.555303 + 0.831648i \(0.312602\pi\)
\(774\) −70.6737 −2.54031
\(775\) 81.7287 2.93578
\(776\) −28.1218 −1.00951
\(777\) −9.15767 −0.328529
\(778\) 69.6891 2.49848
\(779\) 16.8872 0.605047
\(780\) −84.6575 −3.03122
\(781\) 49.1758 1.75965
\(782\) 1.42602 0.0509944
\(783\) −12.1271 −0.433387
\(784\) −69.8606 −2.49502
\(785\) −71.8108 −2.56304
\(786\) 11.8496 0.422661
\(787\) 49.2454 1.75541 0.877704 0.479204i \(-0.159074\pi\)
0.877704 + 0.479204i \(0.159074\pi\)
\(788\) −88.2571 −3.14403
\(789\) 4.75482 0.169276
\(790\) −159.065 −5.65929
\(791\) −30.1423 −1.07174
\(792\) 128.718 4.57381
\(793\) −10.5580 −0.374926
\(794\) −83.6439 −2.96841
\(795\) −41.5076 −1.47212
\(796\) −31.7034 −1.12370
\(797\) 33.1919 1.17572 0.587858 0.808964i \(-0.299971\pi\)
0.587858 + 0.808964i \(0.299971\pi\)
\(798\) −8.60052 −0.304455
\(799\) 2.65137 0.0937989
\(800\) −293.134 −10.3639
\(801\) −36.8453 −1.30186
\(802\) 59.2019 2.09049
\(803\) −53.4017 −1.88450
\(804\) −36.1183 −1.27380
\(805\) 10.2914 0.362725
\(806\) −92.8229 −3.26955
\(807\) 23.2512 0.818481
\(808\) 41.6116 1.46389
\(809\) 31.3586 1.10251 0.551256 0.834336i \(-0.314149\pi\)
0.551256 + 0.834336i \(0.314149\pi\)
\(810\) −43.3417 −1.52287
\(811\) 30.4805 1.07032 0.535158 0.844752i \(-0.320252\pi\)
0.535158 + 0.844752i \(0.320252\pi\)
\(812\) −26.9639 −0.946248
\(813\) −16.4850 −0.578155
\(814\) −104.281 −3.65506
\(815\) −42.0881 −1.47428
\(816\) 4.37475 0.153147
\(817\) 25.6084 0.895925
\(818\) −52.9564 −1.85158
\(819\) −18.7592 −0.655500
\(820\) −161.726 −5.64771
\(821\) 16.8756 0.588964 0.294482 0.955657i \(-0.404853\pi\)
0.294482 + 0.955657i \(0.404853\pi\)
\(822\) −19.5809 −0.682961
\(823\) −20.4063 −0.711318 −0.355659 0.934616i \(-0.615743\pi\)
−0.355659 + 0.934616i \(0.615743\pi\)
\(824\) 18.6388 0.649313
\(825\) −48.2660 −1.68041
\(826\) −1.61978 −0.0563593
\(827\) 44.6763 1.55355 0.776774 0.629779i \(-0.216855\pi\)
0.776774 + 0.629779i \(0.216855\pi\)
\(828\) −20.5023 −0.712503
\(829\) −16.3367 −0.567399 −0.283699 0.958913i \(-0.591562\pi\)
−0.283699 + 0.958913i \(0.591562\pi\)
\(830\) 28.9214 1.00388
\(831\) −0.00643252 −0.000223142 0
\(832\) 177.009 6.13667
\(833\) 1.43396 0.0496838
\(834\) 21.4021 0.741095
\(835\) −49.8465 −1.72501
\(836\) −72.2888 −2.50016
\(837\) 29.9802 1.03627
\(838\) 5.52912 0.191000
\(839\) −7.37673 −0.254673 −0.127337 0.991860i \(-0.540643\pi\)
−0.127337 + 0.991860i \(0.540643\pi\)
\(840\) 53.1423 1.83358
\(841\) −20.7290 −0.714793
\(842\) −90.1089 −3.10536
\(843\) 12.3029 0.423735
\(844\) 18.1921 0.626199
\(845\) 37.8489 1.30204
\(846\) −51.6442 −1.77557
\(847\) 29.5673 1.01595
\(848\) 215.462 7.39898
\(849\) −13.2679 −0.455354
\(850\) 10.7599 0.369061
\(851\) 10.7167 0.367365
\(852\) −40.4462 −1.38566
\(853\) −7.83121 −0.268136 −0.134068 0.990972i \(-0.542804\pi\)
−0.134068 + 0.990972i \(0.542804\pi\)
\(854\) 10.2722 0.351507
\(855\) 23.1794 0.792718
\(856\) −17.3044 −0.591451
\(857\) −49.2792 −1.68335 −0.841674 0.539987i \(-0.818429\pi\)
−0.841674 + 0.539987i \(0.818429\pi\)
\(858\) 54.8178 1.87145
\(859\) 5.61259 0.191499 0.0957496 0.995405i \(-0.469475\pi\)
0.0957496 + 0.995405i \(0.469475\pi\)
\(860\) −245.247 −8.36286
\(861\) 9.19632 0.313410
\(862\) −49.2520 −1.67753
\(863\) −9.18501 −0.312661 −0.156331 0.987705i \(-0.549967\pi\)
−0.156331 + 0.987705i \(0.549967\pi\)
\(864\) −107.529 −3.65821
\(865\) 10.8788 0.369889
\(866\) 38.3837 1.30433
\(867\) 13.2163 0.448849
\(868\) 66.6592 2.26256
\(869\) 76.0250 2.57897
\(870\) −25.2651 −0.856566
\(871\) 38.6739 1.31042
\(872\) −97.5588 −3.30376
\(873\) −6.67977 −0.226076
\(874\) 10.0647 0.340444
\(875\) 43.8767 1.48330
\(876\) 43.9219 1.48398
\(877\) −43.8343 −1.48018 −0.740090 0.672508i \(-0.765217\pi\)
−0.740090 + 0.672508i \(0.765217\pi\)
\(878\) −53.7990 −1.81563
\(879\) −20.3032 −0.684810
\(880\) 359.521 12.1195
\(881\) −15.3025 −0.515556 −0.257778 0.966204i \(-0.582990\pi\)
−0.257778 + 0.966204i \(0.582990\pi\)
\(882\) −27.9311 −0.940489
\(883\) −2.80979 −0.0945571 −0.0472786 0.998882i \(-0.515055\pi\)
−0.0472786 + 0.998882i \(0.515055\pi\)
\(884\) −9.02012 −0.303379
\(885\) −1.12026 −0.0376570
\(886\) −46.6554 −1.56742
\(887\) 32.5514 1.09297 0.546485 0.837469i \(-0.315965\pi\)
0.546485 + 0.837469i \(0.315965\pi\)
\(888\) 55.3385 1.85704
\(889\) −17.1783 −0.576143
\(890\) −173.222 −5.80642
\(891\) 20.7151 0.693983
\(892\) 40.7228 1.36350
\(893\) 18.7131 0.626212
\(894\) −15.3162 −0.512252
\(895\) −13.8010 −0.461316
\(896\) −87.3893 −2.91947
\(897\) −5.63349 −0.188097
\(898\) 84.0943 2.80626
\(899\) −20.4473 −0.681954
\(900\) −154.697 −5.15658
\(901\) −4.42257 −0.147337
\(902\) 104.722 3.48685
\(903\) 13.9456 0.464082
\(904\) 182.146 6.05807
\(905\) 26.9472 0.895755
\(906\) 22.6096 0.751155
\(907\) 30.5867 1.01561 0.507807 0.861471i \(-0.330456\pi\)
0.507807 + 0.861471i \(0.330456\pi\)
\(908\) −115.388 −3.82929
\(909\) 9.88400 0.327832
\(910\) −88.1935 −2.92359
\(911\) 35.5124 1.17658 0.588289 0.808651i \(-0.299802\pi\)
0.588289 + 0.808651i \(0.299802\pi\)
\(912\) 30.8766 1.02243
\(913\) −13.8229 −0.457473
\(914\) 82.1398 2.71694
\(915\) 7.10436 0.234863
\(916\) 82.2592 2.71792
\(917\) 9.11169 0.300895
\(918\) 3.94700 0.130270
\(919\) 4.70643 0.155251 0.0776254 0.996983i \(-0.475266\pi\)
0.0776254 + 0.996983i \(0.475266\pi\)
\(920\) −62.1896 −2.05033
\(921\) −7.06781 −0.232892
\(922\) −95.4895 −3.14478
\(923\) 43.3080 1.42550
\(924\) −39.3665 −1.29506
\(925\) 80.8618 2.65872
\(926\) −21.9664 −0.721860
\(927\) 4.42727 0.145411
\(928\) 73.3376 2.40742
\(929\) −15.1605 −0.497401 −0.248700 0.968580i \(-0.580003\pi\)
−0.248700 + 0.968580i \(0.580003\pi\)
\(930\) 62.4594 2.04812
\(931\) 10.1208 0.331694
\(932\) 38.0626 1.24678
\(933\) −18.7624 −0.614252
\(934\) −12.6874 −0.415145
\(935\) −7.37953 −0.241337
\(936\) 113.359 3.70526
\(937\) −31.3094 −1.02283 −0.511417 0.859333i \(-0.670879\pi\)
−0.511417 + 0.859333i \(0.670879\pi\)
\(938\) −37.6270 −1.22856
\(939\) −21.2503 −0.693476
\(940\) −179.213 −5.84527
\(941\) −57.5159 −1.87497 −0.937483 0.348032i \(-0.886850\pi\)
−0.937483 + 0.348032i \(0.886850\pi\)
\(942\) −38.2448 −1.24608
\(943\) −10.7620 −0.350458
\(944\) 5.81514 0.189267
\(945\) 28.4850 0.926616
\(946\) 158.804 5.16315
\(947\) 38.3279 1.24549 0.622745 0.782425i \(-0.286017\pi\)
0.622745 + 0.782425i \(0.286017\pi\)
\(948\) −62.5292 −2.03085
\(949\) −47.0297 −1.52665
\(950\) 75.9422 2.46389
\(951\) 23.1856 0.751844
\(952\) 5.66222 0.183514
\(953\) 22.3289 0.723304 0.361652 0.932313i \(-0.382213\pi\)
0.361652 + 0.932313i \(0.382213\pi\)
\(954\) 86.1441 2.78902
\(955\) 8.68462 0.281028
\(956\) −117.096 −3.78716
\(957\) 12.0754 0.390342
\(958\) −41.9880 −1.35657
\(959\) −15.0566 −0.486204
\(960\) −119.107 −3.84416
\(961\) 19.5490 0.630612
\(962\) −91.8383 −2.96098
\(963\) −4.11030 −0.132453
\(964\) 43.6551 1.40604
\(965\) 20.0713 0.646119
\(966\) 5.48098 0.176348
\(967\) −34.2936 −1.10281 −0.551404 0.834239i \(-0.685908\pi\)
−0.551404 + 0.834239i \(0.685908\pi\)
\(968\) −178.671 −5.74271
\(969\) −0.633773 −0.0203597
\(970\) −31.4039 −1.00832
\(971\) 30.9617 0.993608 0.496804 0.867863i \(-0.334507\pi\)
0.496804 + 0.867863i \(0.334507\pi\)
\(972\) −88.3469 −2.83373
\(973\) 16.4571 0.527590
\(974\) −38.6857 −1.23957
\(975\) −42.5068 −1.36131
\(976\) −36.8780 −1.18044
\(977\) 53.6337 1.71589 0.857947 0.513738i \(-0.171740\pi\)
0.857947 + 0.513738i \(0.171740\pi\)
\(978\) −22.4152 −0.716758
\(979\) 82.7913 2.64602
\(980\) −96.9246 −3.09614
\(981\) −23.1731 −0.739860
\(982\) −2.08104 −0.0664087
\(983\) −9.78945 −0.312235 −0.156117 0.987738i \(-0.549898\pi\)
−0.156117 + 0.987738i \(0.549898\pi\)
\(984\) −55.5720 −1.77157
\(985\) −63.5892 −2.02612
\(986\) −2.69195 −0.0857293
\(987\) 10.1907 0.324373
\(988\) −63.6631 −2.02539
\(989\) −16.3198 −0.518941
\(990\) 143.741 4.56838
\(991\) 8.69726 0.276278 0.138139 0.990413i \(-0.455888\pi\)
0.138139 + 0.990413i \(0.455888\pi\)
\(992\) −181.302 −5.75636
\(993\) −1.19838 −0.0380294
\(994\) −42.1356 −1.33646
\(995\) −22.8423 −0.724150
\(996\) 11.3691 0.360244
\(997\) −57.7051 −1.82754 −0.913770 0.406232i \(-0.866842\pi\)
−0.913770 + 0.406232i \(0.866842\pi\)
\(998\) 67.7047 2.14315
\(999\) 29.6622 0.938469
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.b.1.4 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.b.1.4 184 1.1 even 1 trivial