Properties

Label 4002.2.a.bj.1.3
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 26x^{6} + 4x^{5} + 209x^{4} + 113x^{3} - 436x^{2} - 360x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.09236\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.09236 q^{5} -1.00000 q^{6} +1.21381 q^{7} +1.00000 q^{8} +1.00000 q^{9} -2.09236 q^{10} +4.27762 q^{11} -1.00000 q^{12} -5.32951 q^{13} +1.21381 q^{14} +2.09236 q^{15} +1.00000 q^{16} +5.49805 q^{17} +1.00000 q^{18} +1.21381 q^{19} -2.09236 q^{20} -1.21381 q^{21} +4.27762 q^{22} +1.00000 q^{23} -1.00000 q^{24} -0.622024 q^{25} -5.32951 q^{26} -1.00000 q^{27} +1.21381 q^{28} +1.00000 q^{29} +2.09236 q^{30} -3.40605 q^{31} +1.00000 q^{32} -4.27762 q^{33} +5.49805 q^{34} -2.53973 q^{35} +1.00000 q^{36} +3.04782 q^{37} +1.21381 q^{38} +5.32951 q^{39} -2.09236 q^{40} -3.69517 q^{41} -1.21381 q^{42} +8.96466 q^{43} +4.27762 q^{44} -2.09236 q^{45} +1.00000 q^{46} -2.76153 q^{47} -1.00000 q^{48} -5.52666 q^{49} -0.622024 q^{50} -5.49805 q^{51} -5.32951 q^{52} -3.94985 q^{53} -1.00000 q^{54} -8.95033 q^{55} +1.21381 q^{56} -1.21381 q^{57} +1.00000 q^{58} +4.90938 q^{59} +2.09236 q^{60} -10.3699 q^{61} -3.40605 q^{62} +1.21381 q^{63} +1.00000 q^{64} +11.1513 q^{65} -4.27762 q^{66} +13.7621 q^{67} +5.49805 q^{68} -1.00000 q^{69} -2.53973 q^{70} +8.59299 q^{71} +1.00000 q^{72} +6.48055 q^{73} +3.04782 q^{74} +0.622024 q^{75} +1.21381 q^{76} +5.19222 q^{77} +5.32951 q^{78} +14.2172 q^{79} -2.09236 q^{80} +1.00000 q^{81} -3.69517 q^{82} +2.28424 q^{83} -1.21381 q^{84} -11.5039 q^{85} +8.96466 q^{86} -1.00000 q^{87} +4.27762 q^{88} +2.82204 q^{89} -2.09236 q^{90} -6.46902 q^{91} +1.00000 q^{92} +3.40605 q^{93} -2.76153 q^{94} -2.53973 q^{95} -1.00000 q^{96} +3.02327 q^{97} -5.52666 q^{98} +4.27762 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + q^{5} - 8 q^{6} + 8 q^{8} + 8 q^{9} + q^{10} + 3 q^{11} - 8 q^{12} + 9 q^{13} - q^{15} + 8 q^{16} + 8 q^{17} + 8 q^{18} + q^{20} + 3 q^{22} + 8 q^{23} - 8 q^{24}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −2.09236 −0.935732 −0.467866 0.883799i \(-0.654977\pi\)
−0.467866 + 0.883799i \(0.654977\pi\)
\(6\) −1.00000 −0.408248
\(7\) 1.21381 0.458778 0.229389 0.973335i \(-0.426327\pi\)
0.229389 + 0.973335i \(0.426327\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −2.09236 −0.661663
\(11\) 4.27762 1.28975 0.644876 0.764288i \(-0.276909\pi\)
0.644876 + 0.764288i \(0.276909\pi\)
\(12\) −1.00000 −0.288675
\(13\) −5.32951 −1.47814 −0.739070 0.673628i \(-0.764735\pi\)
−0.739070 + 0.673628i \(0.764735\pi\)
\(14\) 1.21381 0.324405
\(15\) 2.09236 0.540245
\(16\) 1.00000 0.250000
\(17\) 5.49805 1.33347 0.666737 0.745293i \(-0.267690\pi\)
0.666737 + 0.745293i \(0.267690\pi\)
\(18\) 1.00000 0.235702
\(19\) 1.21381 0.278467 0.139234 0.990260i \(-0.455536\pi\)
0.139234 + 0.990260i \(0.455536\pi\)
\(20\) −2.09236 −0.467866
\(21\) −1.21381 −0.264875
\(22\) 4.27762 0.911992
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) −0.622024 −0.124405
\(26\) −5.32951 −1.04520
\(27\) −1.00000 −0.192450
\(28\) 1.21381 0.229389
\(29\) 1.00000 0.185695
\(30\) 2.09236 0.382011
\(31\) −3.40605 −0.611744 −0.305872 0.952073i \(-0.598948\pi\)
−0.305872 + 0.952073i \(0.598948\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.27762 −0.744638
\(34\) 5.49805 0.942908
\(35\) −2.53973 −0.429293
\(36\) 1.00000 0.166667
\(37\) 3.04782 0.501058 0.250529 0.968109i \(-0.419395\pi\)
0.250529 + 0.968109i \(0.419395\pi\)
\(38\) 1.21381 0.196906
\(39\) 5.32951 0.853405
\(40\) −2.09236 −0.330831
\(41\) −3.69517 −0.577089 −0.288545 0.957466i \(-0.593171\pi\)
−0.288545 + 0.957466i \(0.593171\pi\)
\(42\) −1.21381 −0.187295
\(43\) 8.96466 1.36710 0.683549 0.729905i \(-0.260436\pi\)
0.683549 + 0.729905i \(0.260436\pi\)
\(44\) 4.27762 0.644876
\(45\) −2.09236 −0.311911
\(46\) 1.00000 0.147442
\(47\) −2.76153 −0.402811 −0.201406 0.979508i \(-0.564551\pi\)
−0.201406 + 0.979508i \(0.564551\pi\)
\(48\) −1.00000 −0.144338
\(49\) −5.52666 −0.789523
\(50\) −0.622024 −0.0879675
\(51\) −5.49805 −0.769881
\(52\) −5.32951 −0.739070
\(53\) −3.94985 −0.542554 −0.271277 0.962501i \(-0.587446\pi\)
−0.271277 + 0.962501i \(0.587446\pi\)
\(54\) −1.00000 −0.136083
\(55\) −8.95033 −1.20686
\(56\) 1.21381 0.162202
\(57\) −1.21381 −0.160773
\(58\) 1.00000 0.131306
\(59\) 4.90938 0.639147 0.319573 0.947562i \(-0.396460\pi\)
0.319573 + 0.947562i \(0.396460\pi\)
\(60\) 2.09236 0.270123
\(61\) −10.3699 −1.32773 −0.663863 0.747854i \(-0.731084\pi\)
−0.663863 + 0.747854i \(0.731084\pi\)
\(62\) −3.40605 −0.432568
\(63\) 1.21381 0.152926
\(64\) 1.00000 0.125000
\(65\) 11.1513 1.38314
\(66\) −4.27762 −0.526539
\(67\) 13.7621 1.68130 0.840652 0.541576i \(-0.182172\pi\)
0.840652 + 0.541576i \(0.182172\pi\)
\(68\) 5.49805 0.666737
\(69\) −1.00000 −0.120386
\(70\) −2.53973 −0.303556
\(71\) 8.59299 1.01980 0.509900 0.860234i \(-0.329682\pi\)
0.509900 + 0.860234i \(0.329682\pi\)
\(72\) 1.00000 0.117851
\(73\) 6.48055 0.758491 0.379245 0.925296i \(-0.376184\pi\)
0.379245 + 0.925296i \(0.376184\pi\)
\(74\) 3.04782 0.354302
\(75\) 0.622024 0.0718252
\(76\) 1.21381 0.139234
\(77\) 5.19222 0.591709
\(78\) 5.32951 0.603448
\(79\) 14.2172 1.59956 0.799782 0.600291i \(-0.204949\pi\)
0.799782 + 0.600291i \(0.204949\pi\)
\(80\) −2.09236 −0.233933
\(81\) 1.00000 0.111111
\(82\) −3.69517 −0.408064
\(83\) 2.28424 0.250728 0.125364 0.992111i \(-0.459990\pi\)
0.125364 + 0.992111i \(0.459990\pi\)
\(84\) −1.21381 −0.132438
\(85\) −11.5039 −1.24777
\(86\) 8.96466 0.966684
\(87\) −1.00000 −0.107211
\(88\) 4.27762 0.455996
\(89\) 2.82204 0.299135 0.149568 0.988751i \(-0.452212\pi\)
0.149568 + 0.988751i \(0.452212\pi\)
\(90\) −2.09236 −0.220554
\(91\) −6.46902 −0.678138
\(92\) 1.00000 0.104257
\(93\) 3.40605 0.353191
\(94\) −2.76153 −0.284830
\(95\) −2.53973 −0.260571
\(96\) −1.00000 −0.102062
\(97\) 3.02327 0.306967 0.153483 0.988151i \(-0.450951\pi\)
0.153483 + 0.988151i \(0.450951\pi\)
\(98\) −5.52666 −0.558277
\(99\) 4.27762 0.429917
\(100\) −0.622024 −0.0622024
\(101\) 4.04050 0.402045 0.201022 0.979587i \(-0.435574\pi\)
0.201022 + 0.979587i \(0.435574\pi\)
\(102\) −5.49805 −0.544388
\(103\) −3.18341 −0.313671 −0.156835 0.987625i \(-0.550129\pi\)
−0.156835 + 0.987625i \(0.550129\pi\)
\(104\) −5.32951 −0.522602
\(105\) 2.53973 0.247852
\(106\) −3.94985 −0.383643
\(107\) 7.00698 0.677390 0.338695 0.940896i \(-0.390014\pi\)
0.338695 + 0.940896i \(0.390014\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 17.0266 1.63085 0.815427 0.578859i \(-0.196502\pi\)
0.815427 + 0.578859i \(0.196502\pi\)
\(110\) −8.95033 −0.853380
\(111\) −3.04782 −0.289286
\(112\) 1.21381 0.114694
\(113\) −7.11887 −0.669687 −0.334843 0.942274i \(-0.608683\pi\)
−0.334843 + 0.942274i \(0.608683\pi\)
\(114\) −1.21381 −0.113684
\(115\) −2.09236 −0.195114
\(116\) 1.00000 0.0928477
\(117\) −5.32951 −0.492714
\(118\) 4.90938 0.451945
\(119\) 6.67360 0.611768
\(120\) 2.09236 0.191006
\(121\) 7.29804 0.663458
\(122\) −10.3699 −0.938844
\(123\) 3.69517 0.333183
\(124\) −3.40605 −0.305872
\(125\) 11.7633 1.05214
\(126\) 1.21381 0.108135
\(127\) 4.15476 0.368676 0.184338 0.982863i \(-0.440986\pi\)
0.184338 + 0.982863i \(0.440986\pi\)
\(128\) 1.00000 0.0883883
\(129\) −8.96466 −0.789295
\(130\) 11.1513 0.978031
\(131\) −7.81885 −0.683136 −0.341568 0.939857i \(-0.610958\pi\)
−0.341568 + 0.939857i \(0.610958\pi\)
\(132\) −4.27762 −0.372319
\(133\) 1.47334 0.127755
\(134\) 13.7621 1.18886
\(135\) 2.09236 0.180082
\(136\) 5.49805 0.471454
\(137\) −0.349193 −0.0298336 −0.0149168 0.999889i \(-0.504748\pi\)
−0.0149168 + 0.999889i \(0.504748\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 6.86046 0.581897 0.290948 0.956739i \(-0.406029\pi\)
0.290948 + 0.956739i \(0.406029\pi\)
\(140\) −2.53973 −0.214647
\(141\) 2.76153 0.232563
\(142\) 8.59299 0.721108
\(143\) −22.7976 −1.90643
\(144\) 1.00000 0.0833333
\(145\) −2.09236 −0.173761
\(146\) 6.48055 0.536334
\(147\) 5.52666 0.455831
\(148\) 3.04782 0.250529
\(149\) 11.8766 0.972968 0.486484 0.873689i \(-0.338279\pi\)
0.486484 + 0.873689i \(0.338279\pi\)
\(150\) 0.622024 0.0507881
\(151\) −3.82181 −0.311014 −0.155507 0.987835i \(-0.549701\pi\)
−0.155507 + 0.987835i \(0.549701\pi\)
\(152\) 1.21381 0.0984531
\(153\) 5.49805 0.444491
\(154\) 5.19222 0.418401
\(155\) 7.12668 0.572429
\(156\) 5.32951 0.426702
\(157\) 21.7574 1.73643 0.868214 0.496190i \(-0.165268\pi\)
0.868214 + 0.496190i \(0.165268\pi\)
\(158\) 14.2172 1.13106
\(159\) 3.94985 0.313244
\(160\) −2.09236 −0.165416
\(161\) 1.21381 0.0956617
\(162\) 1.00000 0.0785674
\(163\) 11.8622 0.929123 0.464562 0.885541i \(-0.346212\pi\)
0.464562 + 0.885541i \(0.346212\pi\)
\(164\) −3.69517 −0.288545
\(165\) 8.95033 0.696782
\(166\) 2.28424 0.177292
\(167\) −12.7215 −0.984418 −0.492209 0.870477i \(-0.663810\pi\)
−0.492209 + 0.870477i \(0.663810\pi\)
\(168\) −1.21381 −0.0936476
\(169\) 15.4037 1.18490
\(170\) −11.5039 −0.882310
\(171\) 1.21381 0.0928225
\(172\) 8.96466 0.683549
\(173\) −7.24363 −0.550723 −0.275361 0.961341i \(-0.588797\pi\)
−0.275361 + 0.961341i \(0.588797\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −0.755020 −0.0570742
\(176\) 4.27762 0.322438
\(177\) −4.90938 −0.369012
\(178\) 2.82204 0.211521
\(179\) 9.90582 0.740395 0.370198 0.928953i \(-0.379290\pi\)
0.370198 + 0.928953i \(0.379290\pi\)
\(180\) −2.09236 −0.155955
\(181\) 12.3380 0.917073 0.458537 0.888675i \(-0.348374\pi\)
0.458537 + 0.888675i \(0.348374\pi\)
\(182\) −6.46902 −0.479516
\(183\) 10.3699 0.766563
\(184\) 1.00000 0.0737210
\(185\) −6.37714 −0.468857
\(186\) 3.40605 0.249744
\(187\) 23.5186 1.71985
\(188\) −2.76153 −0.201406
\(189\) −1.21381 −0.0882918
\(190\) −2.53973 −0.184252
\(191\) −6.11363 −0.442367 −0.221183 0.975232i \(-0.570992\pi\)
−0.221183 + 0.975232i \(0.570992\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −11.0150 −0.792880 −0.396440 0.918061i \(-0.629754\pi\)
−0.396440 + 0.918061i \(0.629754\pi\)
\(194\) 3.02327 0.217058
\(195\) −11.1513 −0.798559
\(196\) −5.52666 −0.394762
\(197\) −23.5736 −1.67955 −0.839774 0.542935i \(-0.817313\pi\)
−0.839774 + 0.542935i \(0.817313\pi\)
\(198\) 4.27762 0.303997
\(199\) −1.80591 −0.128017 −0.0640087 0.997949i \(-0.520389\pi\)
−0.0640087 + 0.997949i \(0.520389\pi\)
\(200\) −0.622024 −0.0439838
\(201\) −13.7621 −0.970701
\(202\) 4.04050 0.284289
\(203\) 1.21381 0.0851929
\(204\) −5.49805 −0.384941
\(205\) 7.73164 0.540001
\(206\) −3.18341 −0.221799
\(207\) 1.00000 0.0695048
\(208\) −5.32951 −0.369535
\(209\) 5.19222 0.359154
\(210\) 2.53973 0.175258
\(211\) 18.9339 1.30346 0.651730 0.758451i \(-0.274043\pi\)
0.651730 + 0.758451i \(0.274043\pi\)
\(212\) −3.94985 −0.271277
\(213\) −8.59299 −0.588782
\(214\) 7.00698 0.478987
\(215\) −18.7573 −1.27924
\(216\) −1.00000 −0.0680414
\(217\) −4.13430 −0.280654
\(218\) 17.0266 1.15319
\(219\) −6.48055 −0.437915
\(220\) −8.95033 −0.603431
\(221\) −29.3019 −1.97106
\(222\) −3.04782 −0.204556
\(223\) 13.8070 0.924585 0.462292 0.886728i \(-0.347027\pi\)
0.462292 + 0.886728i \(0.347027\pi\)
\(224\) 1.21381 0.0811012
\(225\) −0.622024 −0.0414683
\(226\) −7.11887 −0.473540
\(227\) 8.41935 0.558812 0.279406 0.960173i \(-0.409862\pi\)
0.279406 + 0.960173i \(0.409862\pi\)
\(228\) −1.21381 −0.0803866
\(229\) −21.7567 −1.43773 −0.718863 0.695152i \(-0.755337\pi\)
−0.718863 + 0.695152i \(0.755337\pi\)
\(230\) −2.09236 −0.137966
\(231\) −5.19222 −0.341623
\(232\) 1.00000 0.0656532
\(233\) −5.35837 −0.351038 −0.175519 0.984476i \(-0.556160\pi\)
−0.175519 + 0.984476i \(0.556160\pi\)
\(234\) −5.32951 −0.348401
\(235\) 5.77813 0.376923
\(236\) 4.90938 0.319573
\(237\) −14.2172 −0.923508
\(238\) 6.67360 0.432585
\(239\) −8.22679 −0.532147 −0.266073 0.963953i \(-0.585726\pi\)
−0.266073 + 0.963953i \(0.585726\pi\)
\(240\) 2.09236 0.135061
\(241\) 16.7123 1.07653 0.538267 0.842774i \(-0.319079\pi\)
0.538267 + 0.842774i \(0.319079\pi\)
\(242\) 7.29804 0.469136
\(243\) −1.00000 −0.0641500
\(244\) −10.3699 −0.663863
\(245\) 11.5638 0.738782
\(246\) 3.69517 0.235596
\(247\) −6.46902 −0.411614
\(248\) −3.40605 −0.216284
\(249\) −2.28424 −0.144758
\(250\) 11.7633 0.743977
\(251\) 12.4578 0.786330 0.393165 0.919468i \(-0.371380\pi\)
0.393165 + 0.919468i \(0.371380\pi\)
\(252\) 1.21381 0.0764629
\(253\) 4.27762 0.268932
\(254\) 4.15476 0.260693
\(255\) 11.5039 0.720403
\(256\) 1.00000 0.0625000
\(257\) −11.0347 −0.688325 −0.344162 0.938910i \(-0.611837\pi\)
−0.344162 + 0.938910i \(0.611837\pi\)
\(258\) −8.96466 −0.558116
\(259\) 3.69948 0.229874
\(260\) 11.1513 0.691572
\(261\) 1.00000 0.0618984
\(262\) −7.81885 −0.483050
\(263\) 18.9683 1.16964 0.584819 0.811164i \(-0.301165\pi\)
0.584819 + 0.811164i \(0.301165\pi\)
\(264\) −4.27762 −0.263269
\(265\) 8.26451 0.507685
\(266\) 1.47334 0.0903361
\(267\) −2.82204 −0.172706
\(268\) 13.7621 0.840652
\(269\) −5.98519 −0.364923 −0.182462 0.983213i \(-0.558407\pi\)
−0.182462 + 0.983213i \(0.558407\pi\)
\(270\) 2.09236 0.127337
\(271\) 24.1545 1.46728 0.733642 0.679536i \(-0.237819\pi\)
0.733642 + 0.679536i \(0.237819\pi\)
\(272\) 5.49805 0.333368
\(273\) 6.46902 0.391523
\(274\) −0.349193 −0.0210955
\(275\) −2.66078 −0.160451
\(276\) −1.00000 −0.0601929
\(277\) 10.7423 0.645445 0.322722 0.946494i \(-0.395402\pi\)
0.322722 + 0.946494i \(0.395402\pi\)
\(278\) 6.86046 0.411463
\(279\) −3.40605 −0.203915
\(280\) −2.53973 −0.151778
\(281\) −9.94896 −0.593505 −0.296753 0.954954i \(-0.595904\pi\)
−0.296753 + 0.954954i \(0.595904\pi\)
\(282\) 2.76153 0.164447
\(283\) 8.56549 0.509165 0.254583 0.967051i \(-0.418062\pi\)
0.254583 + 0.967051i \(0.418062\pi\)
\(284\) 8.59299 0.509900
\(285\) 2.53973 0.150441
\(286\) −22.7976 −1.34805
\(287\) −4.48524 −0.264756
\(288\) 1.00000 0.0589256
\(289\) 13.2286 0.778152
\(290\) −2.09236 −0.122868
\(291\) −3.02327 −0.177227
\(292\) 6.48055 0.379245
\(293\) 27.1351 1.58525 0.792624 0.609711i \(-0.208714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(294\) 5.52666 0.322321
\(295\) −10.2722 −0.598070
\(296\) 3.04782 0.177151
\(297\) −4.27762 −0.248213
\(298\) 11.8766 0.687993
\(299\) −5.32951 −0.308214
\(300\) 0.622024 0.0359126
\(301\) 10.8814 0.627194
\(302\) −3.82181 −0.219920
\(303\) −4.04050 −0.232121
\(304\) 1.21381 0.0696169
\(305\) 21.6975 1.24240
\(306\) 5.49805 0.314303
\(307\) −21.7245 −1.23988 −0.619942 0.784648i \(-0.712844\pi\)
−0.619942 + 0.784648i \(0.712844\pi\)
\(308\) 5.19222 0.295854
\(309\) 3.18341 0.181098
\(310\) 7.12668 0.404768
\(311\) −32.3619 −1.83508 −0.917538 0.397648i \(-0.869827\pi\)
−0.917538 + 0.397648i \(0.869827\pi\)
\(312\) 5.32951 0.301724
\(313\) 13.0739 0.738979 0.369489 0.929235i \(-0.379533\pi\)
0.369489 + 0.929235i \(0.379533\pi\)
\(314\) 21.7574 1.22784
\(315\) −2.53973 −0.143098
\(316\) 14.2172 0.799782
\(317\) −28.2743 −1.58804 −0.794022 0.607888i \(-0.792017\pi\)
−0.794022 + 0.607888i \(0.792017\pi\)
\(318\) 3.94985 0.221497
\(319\) 4.27762 0.239501
\(320\) −2.09236 −0.116967
\(321\) −7.00698 −0.391092
\(322\) 1.21381 0.0676431
\(323\) 6.67360 0.371329
\(324\) 1.00000 0.0555556
\(325\) 3.31509 0.183888
\(326\) 11.8622 0.656989
\(327\) −17.0266 −0.941574
\(328\) −3.69517 −0.204032
\(329\) −3.35198 −0.184801
\(330\) 8.95033 0.492699
\(331\) −3.05261 −0.167787 −0.0838934 0.996475i \(-0.526736\pi\)
−0.0838934 + 0.996475i \(0.526736\pi\)
\(332\) 2.28424 0.125364
\(333\) 3.04782 0.167019
\(334\) −12.7215 −0.696089
\(335\) −28.7952 −1.57325
\(336\) −1.21381 −0.0662188
\(337\) −7.45247 −0.405962 −0.202981 0.979183i \(-0.565063\pi\)
−0.202981 + 0.979183i \(0.565063\pi\)
\(338\) 15.4037 0.837851
\(339\) 7.11887 0.386644
\(340\) −11.5039 −0.623887
\(341\) −14.5698 −0.788998
\(342\) 1.21381 0.0656354
\(343\) −15.2050 −0.820993
\(344\) 8.96466 0.483342
\(345\) 2.09236 0.112649
\(346\) −7.24363 −0.389420
\(347\) 30.3831 1.63105 0.815526 0.578720i \(-0.196447\pi\)
0.815526 + 0.578720i \(0.196447\pi\)
\(348\) −1.00000 −0.0536056
\(349\) 32.8532 1.75859 0.879296 0.476276i \(-0.158014\pi\)
0.879296 + 0.476276i \(0.158014\pi\)
\(350\) −0.755020 −0.0403575
\(351\) 5.32951 0.284468
\(352\) 4.27762 0.227998
\(353\) 15.1861 0.808276 0.404138 0.914698i \(-0.367572\pi\)
0.404138 + 0.914698i \(0.367572\pi\)
\(354\) −4.90938 −0.260931
\(355\) −17.9796 −0.954260
\(356\) 2.82204 0.149568
\(357\) −6.67360 −0.353204
\(358\) 9.90582 0.523539
\(359\) −27.9725 −1.47633 −0.738166 0.674619i \(-0.764308\pi\)
−0.738166 + 0.674619i \(0.764308\pi\)
\(360\) −2.09236 −0.110277
\(361\) −17.5267 −0.922456
\(362\) 12.3380 0.648469
\(363\) −7.29804 −0.383048
\(364\) −6.46902 −0.339069
\(365\) −13.5597 −0.709745
\(366\) 10.3699 0.542042
\(367\) 1.69827 0.0886488 0.0443244 0.999017i \(-0.485886\pi\)
0.0443244 + 0.999017i \(0.485886\pi\)
\(368\) 1.00000 0.0521286
\(369\) −3.69517 −0.192363
\(370\) −6.37714 −0.331532
\(371\) −4.79437 −0.248911
\(372\) 3.40605 0.176595
\(373\) −23.1053 −1.19635 −0.598173 0.801367i \(-0.704106\pi\)
−0.598173 + 0.801367i \(0.704106\pi\)
\(374\) 23.5186 1.21612
\(375\) −11.7633 −0.607455
\(376\) −2.76153 −0.142415
\(377\) −5.32951 −0.274484
\(378\) −1.21381 −0.0624317
\(379\) −7.96124 −0.408942 −0.204471 0.978873i \(-0.565547\pi\)
−0.204471 + 0.978873i \(0.565547\pi\)
\(380\) −2.53973 −0.130285
\(381\) −4.15476 −0.212855
\(382\) −6.11363 −0.312801
\(383\) 20.2496 1.03471 0.517354 0.855772i \(-0.326917\pi\)
0.517354 + 0.855772i \(0.326917\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −10.8640 −0.553681
\(386\) −11.0150 −0.560651
\(387\) 8.96466 0.455699
\(388\) 3.02327 0.153483
\(389\) 6.60450 0.334861 0.167431 0.985884i \(-0.446453\pi\)
0.167431 + 0.985884i \(0.446453\pi\)
\(390\) −11.1513 −0.564666
\(391\) 5.49805 0.278049
\(392\) −5.52666 −0.279139
\(393\) 7.81885 0.394409
\(394\) −23.5736 −1.18762
\(395\) −29.7476 −1.49676
\(396\) 4.27762 0.214959
\(397\) 1.35739 0.0681253 0.0340626 0.999420i \(-0.489155\pi\)
0.0340626 + 0.999420i \(0.489155\pi\)
\(398\) −1.80591 −0.0905220
\(399\) −1.47334 −0.0737591
\(400\) −0.622024 −0.0311012
\(401\) −26.0349 −1.30012 −0.650061 0.759882i \(-0.725256\pi\)
−0.650061 + 0.759882i \(0.725256\pi\)
\(402\) −13.7621 −0.686390
\(403\) 18.1526 0.904244
\(404\) 4.04050 0.201022
\(405\) −2.09236 −0.103970
\(406\) 1.21381 0.0602404
\(407\) 13.0374 0.646241
\(408\) −5.49805 −0.272194
\(409\) 4.89450 0.242018 0.121009 0.992651i \(-0.461387\pi\)
0.121009 + 0.992651i \(0.461387\pi\)
\(410\) 7.73164 0.381839
\(411\) 0.349193 0.0172244
\(412\) −3.18341 −0.156835
\(413\) 5.95906 0.293226
\(414\) 1.00000 0.0491473
\(415\) −4.77946 −0.234614
\(416\) −5.32951 −0.261301
\(417\) −6.86046 −0.335958
\(418\) 5.19222 0.253960
\(419\) −8.89184 −0.434395 −0.217197 0.976128i \(-0.569692\pi\)
−0.217197 + 0.976128i \(0.569692\pi\)
\(420\) 2.53973 0.123926
\(421\) −32.0524 −1.56214 −0.781068 0.624446i \(-0.785325\pi\)
−0.781068 + 0.624446i \(0.785325\pi\)
\(422\) 18.9339 0.921686
\(423\) −2.76153 −0.134270
\(424\) −3.94985 −0.191822
\(425\) −3.41992 −0.165891
\(426\) −8.59299 −0.416332
\(427\) −12.5871 −0.609131
\(428\) 7.00698 0.338695
\(429\) 22.7976 1.10068
\(430\) −18.7573 −0.904558
\(431\) 24.4317 1.17683 0.588416 0.808558i \(-0.299752\pi\)
0.588416 + 0.808558i \(0.299752\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 26.8156 1.28868 0.644338 0.764741i \(-0.277133\pi\)
0.644338 + 0.764741i \(0.277133\pi\)
\(434\) −4.13430 −0.198453
\(435\) 2.09236 0.100321
\(436\) 17.0266 0.815427
\(437\) 1.21381 0.0580645
\(438\) −6.48055 −0.309653
\(439\) 0.906930 0.0432854 0.0216427 0.999766i \(-0.493110\pi\)
0.0216427 + 0.999766i \(0.493110\pi\)
\(440\) −8.95033 −0.426690
\(441\) −5.52666 −0.263174
\(442\) −29.3019 −1.39375
\(443\) 8.31784 0.395193 0.197596 0.980283i \(-0.436687\pi\)
0.197596 + 0.980283i \(0.436687\pi\)
\(444\) −3.04782 −0.144643
\(445\) −5.90472 −0.279911
\(446\) 13.8070 0.653780
\(447\) −11.8766 −0.561744
\(448\) 1.21381 0.0573472
\(449\) −17.5982 −0.830513 −0.415256 0.909704i \(-0.636308\pi\)
−0.415256 + 0.909704i \(0.636308\pi\)
\(450\) −0.622024 −0.0293225
\(451\) −15.8066 −0.744302
\(452\) −7.11887 −0.334843
\(453\) 3.82181 0.179564
\(454\) 8.41935 0.395140
\(455\) 13.5355 0.634555
\(456\) −1.21381 −0.0568419
\(457\) 13.9960 0.654704 0.327352 0.944902i \(-0.393844\pi\)
0.327352 + 0.944902i \(0.393844\pi\)
\(458\) −21.7567 −1.01663
\(459\) −5.49805 −0.256627
\(460\) −2.09236 −0.0975568
\(461\) −9.65966 −0.449895 −0.224948 0.974371i \(-0.572221\pi\)
−0.224948 + 0.974371i \(0.572221\pi\)
\(462\) −5.19222 −0.241564
\(463\) 0.597286 0.0277583 0.0138791 0.999904i \(-0.495582\pi\)
0.0138791 + 0.999904i \(0.495582\pi\)
\(464\) 1.00000 0.0464238
\(465\) −7.12668 −0.330492
\(466\) −5.35837 −0.248222
\(467\) 15.3211 0.708977 0.354488 0.935060i \(-0.384655\pi\)
0.354488 + 0.935060i \(0.384655\pi\)
\(468\) −5.32951 −0.246357
\(469\) 16.7046 0.771345
\(470\) 5.77813 0.266525
\(471\) −21.7574 −1.00253
\(472\) 4.90938 0.225973
\(473\) 38.3474 1.76322
\(474\) −14.2172 −0.653019
\(475\) −0.755020 −0.0346427
\(476\) 6.67360 0.305884
\(477\) −3.94985 −0.180851
\(478\) −8.22679 −0.376285
\(479\) −35.4073 −1.61780 −0.808901 0.587945i \(-0.799937\pi\)
−0.808901 + 0.587945i \(0.799937\pi\)
\(480\) 2.09236 0.0955028
\(481\) −16.2434 −0.740635
\(482\) 16.7123 0.761225
\(483\) −1.21381 −0.0552303
\(484\) 7.29804 0.331729
\(485\) −6.32578 −0.287239
\(486\) −1.00000 −0.0453609
\(487\) −26.4538 −1.19873 −0.599367 0.800474i \(-0.704581\pi\)
−0.599367 + 0.800474i \(0.704581\pi\)
\(488\) −10.3699 −0.469422
\(489\) −11.8622 −0.536429
\(490\) 11.5638 0.522398
\(491\) −36.7051 −1.65648 −0.828238 0.560377i \(-0.810656\pi\)
−0.828238 + 0.560377i \(0.810656\pi\)
\(492\) 3.69517 0.166591
\(493\) 5.49805 0.247620
\(494\) −6.46902 −0.291055
\(495\) −8.95033 −0.402287
\(496\) −3.40605 −0.152936
\(497\) 10.4303 0.467862
\(498\) −2.28424 −0.102359
\(499\) −13.5721 −0.607570 −0.303785 0.952741i \(-0.598251\pi\)
−0.303785 + 0.952741i \(0.598251\pi\)
\(500\) 11.7633 0.526071
\(501\) 12.7215 0.568354
\(502\) 12.4578 0.556019
\(503\) −14.9130 −0.664938 −0.332469 0.943114i \(-0.607882\pi\)
−0.332469 + 0.943114i \(0.607882\pi\)
\(504\) 1.21381 0.0540675
\(505\) −8.45418 −0.376206
\(506\) 4.27762 0.190163
\(507\) −15.4037 −0.684102
\(508\) 4.15476 0.184338
\(509\) −10.0137 −0.443850 −0.221925 0.975064i \(-0.571234\pi\)
−0.221925 + 0.975064i \(0.571234\pi\)
\(510\) 11.5039 0.509402
\(511\) 7.86616 0.347979
\(512\) 1.00000 0.0441942
\(513\) −1.21381 −0.0535911
\(514\) −11.0347 −0.486719
\(515\) 6.66084 0.293512
\(516\) −8.96466 −0.394647
\(517\) −11.8128 −0.519526
\(518\) 3.69948 0.162546
\(519\) 7.24363 0.317960
\(520\) 11.1513 0.489015
\(521\) 26.1433 1.14536 0.572679 0.819779i \(-0.305904\pi\)
0.572679 + 0.819779i \(0.305904\pi\)
\(522\) 1.00000 0.0437688
\(523\) −40.0908 −1.75305 −0.876525 0.481356i \(-0.840144\pi\)
−0.876525 + 0.481356i \(0.840144\pi\)
\(524\) −7.81885 −0.341568
\(525\) 0.755020 0.0329518
\(526\) 18.9683 0.827059
\(527\) −18.7266 −0.815745
\(528\) −4.27762 −0.186160
\(529\) 1.00000 0.0434783
\(530\) 8.26451 0.358988
\(531\) 4.90938 0.213049
\(532\) 1.47334 0.0638773
\(533\) 19.6935 0.853019
\(534\) −2.82204 −0.122122
\(535\) −14.6611 −0.633856
\(536\) 13.7621 0.594431
\(537\) −9.90582 −0.427468
\(538\) −5.98519 −0.258040
\(539\) −23.6410 −1.01829
\(540\) 2.09236 0.0900409
\(541\) −15.4106 −0.662552 −0.331276 0.943534i \(-0.607479\pi\)
−0.331276 + 0.943534i \(0.607479\pi\)
\(542\) 24.1545 1.03753
\(543\) −12.3380 −0.529473
\(544\) 5.49805 0.235727
\(545\) −35.6258 −1.52604
\(546\) 6.46902 0.276849
\(547\) −19.2806 −0.824379 −0.412190 0.911098i \(-0.635236\pi\)
−0.412190 + 0.911098i \(0.635236\pi\)
\(548\) −0.349193 −0.0149168
\(549\) −10.3699 −0.442575
\(550\) −2.66078 −0.113456
\(551\) 1.21381 0.0517101
\(552\) −1.00000 −0.0425628
\(553\) 17.2570 0.733844
\(554\) 10.7423 0.456399
\(555\) 6.37714 0.270695
\(556\) 6.86046 0.290948
\(557\) 1.61098 0.0682596 0.0341298 0.999417i \(-0.489134\pi\)
0.0341298 + 0.999417i \(0.489134\pi\)
\(558\) −3.40605 −0.144189
\(559\) −47.7773 −2.02076
\(560\) −2.53973 −0.107323
\(561\) −23.5186 −0.992956
\(562\) −9.94896 −0.419672
\(563\) −1.14503 −0.0482572 −0.0241286 0.999709i \(-0.507681\pi\)
−0.0241286 + 0.999709i \(0.507681\pi\)
\(564\) 2.76153 0.116282
\(565\) 14.8952 0.626648
\(566\) 8.56549 0.360034
\(567\) 1.21381 0.0509753
\(568\) 8.59299 0.360554
\(569\) −24.1326 −1.01169 −0.505845 0.862624i \(-0.668819\pi\)
−0.505845 + 0.862624i \(0.668819\pi\)
\(570\) 2.53973 0.106378
\(571\) 14.1131 0.590614 0.295307 0.955402i \(-0.404578\pi\)
0.295307 + 0.955402i \(0.404578\pi\)
\(572\) −22.7976 −0.953217
\(573\) 6.11363 0.255401
\(574\) −4.48524 −0.187210
\(575\) −0.622024 −0.0259402
\(576\) 1.00000 0.0416667
\(577\) 17.5599 0.731027 0.365513 0.930806i \(-0.380893\pi\)
0.365513 + 0.930806i \(0.380893\pi\)
\(578\) 13.2286 0.550237
\(579\) 11.0150 0.457769
\(580\) −2.09236 −0.0868806
\(581\) 2.77264 0.115028
\(582\) −3.02327 −0.125319
\(583\) −16.8960 −0.699759
\(584\) 6.48055 0.268167
\(585\) 11.1513 0.461048
\(586\) 27.1351 1.12094
\(587\) 11.1455 0.460026 0.230013 0.973188i \(-0.426123\pi\)
0.230013 + 0.973188i \(0.426123\pi\)
\(588\) 5.52666 0.227916
\(589\) −4.13430 −0.170351
\(590\) −10.2722 −0.422900
\(591\) 23.5736 0.969688
\(592\) 3.04782 0.125265
\(593\) 8.80425 0.361547 0.180774 0.983525i \(-0.442140\pi\)
0.180774 + 0.983525i \(0.442140\pi\)
\(594\) −4.27762 −0.175513
\(595\) −13.9636 −0.572451
\(596\) 11.8766 0.486484
\(597\) 1.80591 0.0739109
\(598\) −5.32951 −0.217940
\(599\) 21.5453 0.880315 0.440158 0.897921i \(-0.354923\pi\)
0.440158 + 0.897921i \(0.354923\pi\)
\(600\) 0.622024 0.0253940
\(601\) −12.9212 −0.527066 −0.263533 0.964650i \(-0.584888\pi\)
−0.263533 + 0.964650i \(0.584888\pi\)
\(602\) 10.8814 0.443493
\(603\) 13.7621 0.560435
\(604\) −3.82181 −0.155507
\(605\) −15.2701 −0.620819
\(606\) −4.04050 −0.164134
\(607\) −42.9237 −1.74222 −0.871110 0.491088i \(-0.836600\pi\)
−0.871110 + 0.491088i \(0.836600\pi\)
\(608\) 1.21381 0.0492265
\(609\) −1.21381 −0.0491861
\(610\) 21.6975 0.878507
\(611\) 14.7176 0.595412
\(612\) 5.49805 0.222246
\(613\) −18.9477 −0.765290 −0.382645 0.923895i \(-0.624987\pi\)
−0.382645 + 0.923895i \(0.624987\pi\)
\(614\) −21.7245 −0.876730
\(615\) −7.73164 −0.311770
\(616\) 5.19222 0.209201
\(617\) −3.80346 −0.153122 −0.0765608 0.997065i \(-0.524394\pi\)
−0.0765608 + 0.997065i \(0.524394\pi\)
\(618\) 3.18341 0.128056
\(619\) 6.07400 0.244135 0.122067 0.992522i \(-0.461048\pi\)
0.122067 + 0.992522i \(0.461048\pi\)
\(620\) 7.12668 0.286214
\(621\) −1.00000 −0.0401286
\(622\) −32.3619 −1.29759
\(623\) 3.42542 0.137237
\(624\) 5.32951 0.213351
\(625\) −21.5030 −0.860119
\(626\) 13.0739 0.522537
\(627\) −5.19222 −0.207357
\(628\) 21.7574 0.868214
\(629\) 16.7571 0.668148
\(630\) −2.53973 −0.101185
\(631\) −49.5454 −1.97237 −0.986186 0.165640i \(-0.947031\pi\)
−0.986186 + 0.165640i \(0.947031\pi\)
\(632\) 14.2172 0.565531
\(633\) −18.9339 −0.752553
\(634\) −28.2743 −1.12292
\(635\) −8.69326 −0.344982
\(636\) 3.94985 0.156622
\(637\) 29.4544 1.16703
\(638\) 4.27762 0.169353
\(639\) 8.59299 0.339934
\(640\) −2.09236 −0.0827078
\(641\) 33.8597 1.33738 0.668690 0.743541i \(-0.266855\pi\)
0.668690 + 0.743541i \(0.266855\pi\)
\(642\) −7.00698 −0.276544
\(643\) 3.55721 0.140283 0.0701414 0.997537i \(-0.477655\pi\)
0.0701414 + 0.997537i \(0.477655\pi\)
\(644\) 1.21381 0.0478309
\(645\) 18.7573 0.738568
\(646\) 6.67360 0.262569
\(647\) −33.3672 −1.31180 −0.655899 0.754849i \(-0.727710\pi\)
−0.655899 + 0.754849i \(0.727710\pi\)
\(648\) 1.00000 0.0392837
\(649\) 21.0005 0.824340
\(650\) 3.31509 0.130028
\(651\) 4.13430 0.162036
\(652\) 11.8622 0.464562
\(653\) 36.5638 1.43085 0.715425 0.698689i \(-0.246233\pi\)
0.715425 + 0.698689i \(0.246233\pi\)
\(654\) −17.0266 −0.665794
\(655\) 16.3599 0.639232
\(656\) −3.69517 −0.144272
\(657\) 6.48055 0.252830
\(658\) −3.35198 −0.130674
\(659\) −29.8465 −1.16265 −0.581327 0.813670i \(-0.697466\pi\)
−0.581327 + 0.813670i \(0.697466\pi\)
\(660\) 8.95033 0.348391
\(661\) −11.4400 −0.444965 −0.222482 0.974937i \(-0.571416\pi\)
−0.222482 + 0.974937i \(0.571416\pi\)
\(662\) −3.05261 −0.118643
\(663\) 29.3019 1.13799
\(664\) 2.28424 0.0886458
\(665\) −3.08276 −0.119544
\(666\) 3.04782 0.118101
\(667\) 1.00000 0.0387202
\(668\) −12.7215 −0.492209
\(669\) −13.8070 −0.533809
\(670\) −28.7952 −1.11246
\(671\) −44.3584 −1.71244
\(672\) −1.21381 −0.0468238
\(673\) 24.0229 0.926016 0.463008 0.886354i \(-0.346770\pi\)
0.463008 + 0.886354i \(0.346770\pi\)
\(674\) −7.45247 −0.287059
\(675\) 0.622024 0.0239417
\(676\) 15.4037 0.592450
\(677\) 25.4903 0.979673 0.489836 0.871814i \(-0.337057\pi\)
0.489836 + 0.871814i \(0.337057\pi\)
\(678\) 7.11887 0.273399
\(679\) 3.66968 0.140829
\(680\) −11.5039 −0.441155
\(681\) −8.41935 −0.322630
\(682\) −14.5698 −0.557906
\(683\) 4.36220 0.166915 0.0834575 0.996511i \(-0.473404\pi\)
0.0834575 + 0.996511i \(0.473404\pi\)
\(684\) 1.21381 0.0464112
\(685\) 0.730638 0.0279162
\(686\) −15.2050 −0.580530
\(687\) 21.7567 0.830071
\(688\) 8.96466 0.341775
\(689\) 21.0508 0.801971
\(690\) 2.09236 0.0796548
\(691\) −7.63496 −0.290448 −0.145224 0.989399i \(-0.546390\pi\)
−0.145224 + 0.989399i \(0.546390\pi\)
\(692\) −7.24363 −0.275361
\(693\) 5.19222 0.197236
\(694\) 30.3831 1.15333
\(695\) −14.3546 −0.544500
\(696\) −1.00000 −0.0379049
\(697\) −20.3163 −0.769534
\(698\) 32.8532 1.24351
\(699\) 5.35837 0.202672
\(700\) −0.755020 −0.0285371
\(701\) 14.2419 0.537908 0.268954 0.963153i \(-0.413322\pi\)
0.268954 + 0.963153i \(0.413322\pi\)
\(702\) 5.32951 0.201149
\(703\) 3.69948 0.139528
\(704\) 4.27762 0.161219
\(705\) −5.77813 −0.217617
\(706\) 15.1861 0.571537
\(707\) 4.90440 0.184449
\(708\) −4.90938 −0.184506
\(709\) 49.2524 1.84971 0.924856 0.380316i \(-0.124185\pi\)
0.924856 + 0.380316i \(0.124185\pi\)
\(710\) −17.9796 −0.674764
\(711\) 14.2172 0.533188
\(712\) 2.82204 0.105760
\(713\) −3.40605 −0.127557
\(714\) −6.67360 −0.249753
\(715\) 47.7009 1.78391
\(716\) 9.90582 0.370198
\(717\) 8.22679 0.307235
\(718\) −27.9725 −1.04392
\(719\) −4.21837 −0.157319 −0.0786594 0.996902i \(-0.525064\pi\)
−0.0786594 + 0.996902i \(0.525064\pi\)
\(720\) −2.09236 −0.0779777
\(721\) −3.86406 −0.143905
\(722\) −17.5267 −0.652275
\(723\) −16.7123 −0.621538
\(724\) 12.3380 0.458537
\(725\) −0.622024 −0.0231014
\(726\) −7.29804 −0.270856
\(727\) 17.0789 0.633420 0.316710 0.948522i \(-0.397422\pi\)
0.316710 + 0.948522i \(0.397422\pi\)
\(728\) −6.46902 −0.239758
\(729\) 1.00000 0.0370370
\(730\) −13.5597 −0.501865
\(731\) 49.2882 1.82299
\(732\) 10.3699 0.383282
\(733\) −28.0285 −1.03526 −0.517628 0.855606i \(-0.673185\pi\)
−0.517628 + 0.855606i \(0.673185\pi\)
\(734\) 1.69827 0.0626842
\(735\) −11.5638 −0.426536
\(736\) 1.00000 0.0368605
\(737\) 58.8689 2.16846
\(738\) −3.69517 −0.136021
\(739\) 8.50957 0.313029 0.156515 0.987676i \(-0.449974\pi\)
0.156515 + 0.987676i \(0.449974\pi\)
\(740\) −6.37714 −0.234428
\(741\) 6.46902 0.237645
\(742\) −4.79437 −0.176007
\(743\) −42.6202 −1.56358 −0.781792 0.623539i \(-0.785694\pi\)
−0.781792 + 0.623539i \(0.785694\pi\)
\(744\) 3.40605 0.124872
\(745\) −24.8501 −0.910438
\(746\) −23.1053 −0.845944
\(747\) 2.28424 0.0835761
\(748\) 23.5186 0.859925
\(749\) 8.50515 0.310772
\(750\) −11.7633 −0.429535
\(751\) −37.1522 −1.35570 −0.677852 0.735199i \(-0.737089\pi\)
−0.677852 + 0.735199i \(0.737089\pi\)
\(752\) −2.76153 −0.100703
\(753\) −12.4578 −0.453988
\(754\) −5.32951 −0.194089
\(755\) 7.99660 0.291026
\(756\) −1.21381 −0.0441459
\(757\) 22.4227 0.814967 0.407484 0.913213i \(-0.366406\pi\)
0.407484 + 0.913213i \(0.366406\pi\)
\(758\) −7.96124 −0.289165
\(759\) −4.27762 −0.155268
\(760\) −2.53973 −0.0921258
\(761\) −27.5129 −0.997342 −0.498671 0.866791i \(-0.666178\pi\)
−0.498671 + 0.866791i \(0.666178\pi\)
\(762\) −4.15476 −0.150511
\(763\) 20.6671 0.748199
\(764\) −6.11363 −0.221183
\(765\) −11.5039 −0.415925
\(766\) 20.2496 0.731649
\(767\) −26.1646 −0.944749
\(768\) −1.00000 −0.0360844
\(769\) 25.9471 0.935678 0.467839 0.883814i \(-0.345033\pi\)
0.467839 + 0.883814i \(0.345033\pi\)
\(770\) −10.8640 −0.391512
\(771\) 11.0347 0.397405
\(772\) −11.0150 −0.396440
\(773\) −10.9440 −0.393629 −0.196814 0.980441i \(-0.563060\pi\)
−0.196814 + 0.980441i \(0.563060\pi\)
\(774\) 8.96466 0.322228
\(775\) 2.11864 0.0761039
\(776\) 3.02327 0.108529
\(777\) −3.69948 −0.132718
\(778\) 6.60450 0.236783
\(779\) −4.48524 −0.160701
\(780\) −11.1513 −0.399279
\(781\) 36.7576 1.31529
\(782\) 5.49805 0.196610
\(783\) −1.00000 −0.0357371
\(784\) −5.52666 −0.197381
\(785\) −45.5243 −1.62483
\(786\) 7.81885 0.278889
\(787\) −6.75972 −0.240958 −0.120479 0.992716i \(-0.538443\pi\)
−0.120479 + 0.992716i \(0.538443\pi\)
\(788\) −23.5736 −0.839774
\(789\) −18.9683 −0.675291
\(790\) −29.7476 −1.05837
\(791\) −8.64096 −0.307237
\(792\) 4.27762 0.151999
\(793\) 55.2664 1.96257
\(794\) 1.35739 0.0481719
\(795\) −8.26451 −0.293112
\(796\) −1.80591 −0.0640087
\(797\) −9.11727 −0.322950 −0.161475 0.986877i \(-0.551625\pi\)
−0.161475 + 0.986877i \(0.551625\pi\)
\(798\) −1.47334 −0.0521556
\(799\) −15.1831 −0.537138
\(800\) −0.622024 −0.0219919
\(801\) 2.82204 0.0997118
\(802\) −26.0349 −0.919324
\(803\) 27.7213 0.978265
\(804\) −13.7621 −0.485351
\(805\) −2.53973 −0.0895138
\(806\) 18.1526 0.639397
\(807\) 5.98519 0.210689
\(808\) 4.04050 0.142144
\(809\) −30.2514 −1.06358 −0.531791 0.846876i \(-0.678481\pi\)
−0.531791 + 0.846876i \(0.678481\pi\)
\(810\) −2.09236 −0.0735181
\(811\) 6.92975 0.243336 0.121668 0.992571i \(-0.461176\pi\)
0.121668 + 0.992571i \(0.461176\pi\)
\(812\) 1.21381 0.0425964
\(813\) −24.1545 −0.847137
\(814\) 13.0374 0.456961
\(815\) −24.8201 −0.869411
\(816\) −5.49805 −0.192470
\(817\) 10.8814 0.380692
\(818\) 4.89450 0.171132
\(819\) −6.46902 −0.226046
\(820\) 7.73164 0.270001
\(821\) 13.1188 0.457849 0.228924 0.973444i \(-0.426479\pi\)
0.228924 + 0.973444i \(0.426479\pi\)
\(822\) 0.349193 0.0121795
\(823\) −13.0887 −0.456243 −0.228121 0.973633i \(-0.573258\pi\)
−0.228121 + 0.973633i \(0.573258\pi\)
\(824\) −3.18341 −0.110899
\(825\) 2.66078 0.0926366
\(826\) 5.95906 0.207342
\(827\) −12.7616 −0.443763 −0.221882 0.975074i \(-0.571220\pi\)
−0.221882 + 0.975074i \(0.571220\pi\)
\(828\) 1.00000 0.0347524
\(829\) 45.7087 1.58753 0.793764 0.608226i \(-0.208119\pi\)
0.793764 + 0.608226i \(0.208119\pi\)
\(830\) −4.77946 −0.165897
\(831\) −10.7423 −0.372648
\(832\) −5.32951 −0.184768
\(833\) −30.3859 −1.05281
\(834\) −6.86046 −0.237558
\(835\) 26.6179 0.921152
\(836\) 5.19222 0.179577
\(837\) 3.40605 0.117730
\(838\) −8.89184 −0.307164
\(839\) −45.5170 −1.57142 −0.785711 0.618593i \(-0.787703\pi\)
−0.785711 + 0.618593i \(0.787703\pi\)
\(840\) 2.53973 0.0876291
\(841\) 1.00000 0.0344828
\(842\) −32.0524 −1.10460
\(843\) 9.94896 0.342660
\(844\) 18.9339 0.651730
\(845\) −32.2301 −1.10875
\(846\) −2.76153 −0.0949435
\(847\) 8.85844 0.304380
\(848\) −3.94985 −0.135638
\(849\) −8.56549 −0.293967
\(850\) −3.41992 −0.117302
\(851\) 3.04782 0.104478
\(852\) −8.59299 −0.294391
\(853\) 42.7292 1.46302 0.731509 0.681831i \(-0.238816\pi\)
0.731509 + 0.681831i \(0.238816\pi\)
\(854\) −12.5871 −0.430721
\(855\) −2.53973 −0.0868570
\(856\) 7.00698 0.239494
\(857\) 4.68105 0.159902 0.0799508 0.996799i \(-0.474524\pi\)
0.0799508 + 0.996799i \(0.474524\pi\)
\(858\) 22.7976 0.778298
\(859\) 39.7263 1.35545 0.677723 0.735318i \(-0.262967\pi\)
0.677723 + 0.735318i \(0.262967\pi\)
\(860\) −18.7573 −0.639619
\(861\) 4.48524 0.152857
\(862\) 24.4317 0.832146
\(863\) 32.1628 1.09483 0.547417 0.836860i \(-0.315611\pi\)
0.547417 + 0.836860i \(0.315611\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 15.1563 0.515329
\(866\) 26.8156 0.911231
\(867\) −13.2286 −0.449267
\(868\) −4.13430 −0.140327
\(869\) 60.8159 2.06304
\(870\) 2.09236 0.0709377
\(871\) −73.3451 −2.48520
\(872\) 17.0266 0.576594
\(873\) 3.02327 0.102322
\(874\) 1.21381 0.0410578
\(875\) 14.2784 0.482699
\(876\) −6.48055 −0.218957
\(877\) −33.4579 −1.12979 −0.564897 0.825162i \(-0.691084\pi\)
−0.564897 + 0.825162i \(0.691084\pi\)
\(878\) 0.906930 0.0306074
\(879\) −27.1351 −0.915243
\(880\) −8.95033 −0.301715
\(881\) −36.3589 −1.22496 −0.612481 0.790486i \(-0.709828\pi\)
−0.612481 + 0.790486i \(0.709828\pi\)
\(882\) −5.52666 −0.186092
\(883\) −9.60552 −0.323251 −0.161626 0.986852i \(-0.551674\pi\)
−0.161626 + 0.986852i \(0.551674\pi\)
\(884\) −29.3019 −0.985531
\(885\) 10.2722 0.345296
\(886\) 8.31784 0.279443
\(887\) 14.9948 0.503475 0.251737 0.967796i \(-0.418998\pi\)
0.251737 + 0.967796i \(0.418998\pi\)
\(888\) −3.04782 −0.102278
\(889\) 5.04310 0.169140
\(890\) −5.90472 −0.197927
\(891\) 4.27762 0.143306
\(892\) 13.8070 0.462292
\(893\) −3.35198 −0.112170
\(894\) −11.8766 −0.397213
\(895\) −20.7265 −0.692812
\(896\) 1.21381 0.0405506
\(897\) 5.32951 0.177947
\(898\) −17.5982 −0.587261
\(899\) −3.40605 −0.113598
\(900\) −0.622024 −0.0207341
\(901\) −21.7165 −0.723481
\(902\) −15.8066 −0.526301
\(903\) −10.8814 −0.362111
\(904\) −7.11887 −0.236770
\(905\) −25.8155 −0.858135
\(906\) 3.82181 0.126971
\(907\) 46.7989 1.55393 0.776966 0.629542i \(-0.216758\pi\)
0.776966 + 0.629542i \(0.216758\pi\)
\(908\) 8.41935 0.279406
\(909\) 4.04050 0.134015
\(910\) 13.5355 0.448698
\(911\) −7.17495 −0.237717 −0.118858 0.992911i \(-0.537923\pi\)
−0.118858 + 0.992911i \(0.537923\pi\)
\(912\) −1.21381 −0.0401933
\(913\) 9.77112 0.323377
\(914\) 13.9960 0.462946
\(915\) −21.6975 −0.717298
\(916\) −21.7567 −0.718863
\(917\) −9.49060 −0.313407
\(918\) −5.49805 −0.181463
\(919\) −31.7852 −1.04850 −0.524248 0.851566i \(-0.675654\pi\)
−0.524248 + 0.851566i \(0.675654\pi\)
\(920\) −2.09236 −0.0689831
\(921\) 21.7245 0.715847
\(922\) −9.65966 −0.318124
\(923\) −45.7965 −1.50741
\(924\) −5.19222 −0.170812
\(925\) −1.89582 −0.0623341
\(926\) 0.597286 0.0196281
\(927\) −3.18341 −0.104557
\(928\) 1.00000 0.0328266
\(929\) −39.7708 −1.30484 −0.652419 0.757858i \(-0.726246\pi\)
−0.652419 + 0.757858i \(0.726246\pi\)
\(930\) −7.12668 −0.233693
\(931\) −6.70832 −0.219856
\(932\) −5.35837 −0.175519
\(933\) 32.3619 1.05948
\(934\) 15.3211 0.501322
\(935\) −49.2094 −1.60932
\(936\) −5.32951 −0.174201
\(937\) 45.3348 1.48102 0.740512 0.672043i \(-0.234583\pi\)
0.740512 + 0.672043i \(0.234583\pi\)
\(938\) 16.7046 0.545423
\(939\) −13.0739 −0.426650
\(940\) 5.77813 0.188462
\(941\) −61.0105 −1.98888 −0.994442 0.105285i \(-0.966424\pi\)
−0.994442 + 0.105285i \(0.966424\pi\)
\(942\) −21.7574 −0.708894
\(943\) −3.69517 −0.120331
\(944\) 4.90938 0.159787
\(945\) 2.53973 0.0826175
\(946\) 38.3474 1.24678
\(947\) 13.3643 0.434283 0.217141 0.976140i \(-0.430327\pi\)
0.217141 + 0.976140i \(0.430327\pi\)
\(948\) −14.2172 −0.461754
\(949\) −34.5382 −1.12116
\(950\) −0.755020 −0.0244961
\(951\) 28.2743 0.916858
\(952\) 6.67360 0.216293
\(953\) 46.0166 1.49062 0.745312 0.666715i \(-0.232300\pi\)
0.745312 + 0.666715i \(0.232300\pi\)
\(954\) −3.94985 −0.127881
\(955\) 12.7919 0.413937
\(956\) −8.22679 −0.266073
\(957\) −4.27762 −0.138276
\(958\) −35.4073 −1.14396
\(959\) −0.423854 −0.0136870
\(960\) 2.09236 0.0675307
\(961\) −19.3988 −0.625769
\(962\) −16.2434 −0.523708
\(963\) 7.00698 0.225797
\(964\) 16.7123 0.538267
\(965\) 23.0474 0.741923
\(966\) −1.21381 −0.0390537
\(967\) 28.5937 0.919512 0.459756 0.888045i \(-0.347937\pi\)
0.459756 + 0.888045i \(0.347937\pi\)
\(968\) 7.29804 0.234568
\(969\) −6.67360 −0.214387
\(970\) −6.32578 −0.203108
\(971\) −28.0849 −0.901287 −0.450643 0.892704i \(-0.648805\pi\)
−0.450643 + 0.892704i \(0.648805\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 8.32730 0.266961
\(974\) −26.4538 −0.847633
\(975\) −3.31509 −0.106168
\(976\) −10.3699 −0.331932
\(977\) 49.2407 1.57535 0.787674 0.616092i \(-0.211285\pi\)
0.787674 + 0.616092i \(0.211285\pi\)
\(978\) −11.8622 −0.379313
\(979\) 12.0716 0.385810
\(980\) 11.5638 0.369391
\(981\) 17.0266 0.543618
\(982\) −36.7051 −1.17131
\(983\) −8.16426 −0.260399 −0.130200 0.991488i \(-0.541562\pi\)
−0.130200 + 0.991488i \(0.541562\pi\)
\(984\) 3.69517 0.117798
\(985\) 49.3245 1.57161
\(986\) 5.49805 0.175094
\(987\) 3.35198 0.106695
\(988\) −6.46902 −0.205807
\(989\) 8.96466 0.285060
\(990\) −8.95033 −0.284460
\(991\) 21.5174 0.683523 0.341761 0.939787i \(-0.388977\pi\)
0.341761 + 0.939787i \(0.388977\pi\)
\(992\) −3.40605 −0.108142
\(993\) 3.05261 0.0968718
\(994\) 10.4303 0.330828
\(995\) 3.77861 0.119790
\(996\) −2.28424 −0.0723790
\(997\) 48.4232 1.53358 0.766790 0.641899i \(-0.221853\pi\)
0.766790 + 0.641899i \(0.221853\pi\)
\(998\) −13.5721 −0.429617
\(999\) −3.04782 −0.0964287
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bj.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bj.1.3 8 1.1 even 1 trivial