Defining parameters
Level: | \( N \) | \(=\) | \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4002.o (of order \(14\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q(\zeta_{14})\) | ||
Sturm bound: | \(1440\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4002, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4368 | 648 | 3720 |
Cusp forms | 4272 | 648 | 3624 |
Eisenstein series | 96 | 0 | 96 |
Decomposition of \(S_{2}^{\mathrm{new}}(4002, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4002, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4002, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(174, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(667, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1334, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2001, [\chi])\)\(^{\oplus 2}\)