Properties

Label 4032.2.a
Level 40324032
Weight 22
Character orbit 4032.a
Rep. character χ4032(1,)\chi_{4032}(1,\cdot)
Character field Q\Q
Dimension 6060
Newform subspaces 5050
Sturm bound 15361536
Trace bound 1313

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4032=26327 4032 = 2^{6} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4032.a (trivial)
Character field: Q\Q
Newform subspaces: 50 50
Sturm bound: 15361536
Trace bound: 1313
Distinguishing TpT_p: 55, 1111, 1313, 1717, 1919

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(4032))M_{2}(\Gamma_0(4032)).

Total New Old
Modular forms 816 60 756
Cusp forms 721 60 661
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

223377FrickeDim
++++++++66
++++--88
++-++-99
++--++88
-++++-66
-++-++44
--++++99
----1010
Plus space++2727
Minus space-3333

Trace form

60q8q17+52q258q298q37+8q41+60q4956q53+32q61+8q738q77+32q85+8q898q97+O(q100) 60 q - 8 q^{17} + 52 q^{25} - 8 q^{29} - 8 q^{37} + 8 q^{41} + 60 q^{49} - 56 q^{53} + 32 q^{61} + 8 q^{73} - 8 q^{77} + 32 q^{85} + 8 q^{89} - 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(4032))S_{2}^{\mathrm{new}}(\Gamma_0(4032)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 7
4032.2.a.a 4032.a 1.a 11 32.19632.196 Q\Q None 56.2.a.b 00 00 4-4 1-1 - - ++ SU(2)\mathrm{SU}(2) q4q5q7+2q172q19+8q23+q-4q^{5}-q^{7}+2q^{17}-2q^{19}+8q^{23}+\cdots
4032.2.a.b 4032.a 1.a 11 32.19632.196 Q\Q None 672.2.a.a 00 00 4-4 1-1 ++ - ++ SU(2)\mathrm{SU}(2) q4q5q7+2q11+2q134q19+q-4q^{5}-q^{7}+2q^{11}+2q^{13}-4q^{19}+\cdots
4032.2.a.c 4032.a 1.a 11 32.19632.196 Q\Q None 672.2.a.a 00 00 4-4 11 ++ - - SU(2)\mathrm{SU}(2) q4q5+q72q11+2q13+4q19+q-4q^{5}+q^{7}-2q^{11}+2q^{13}+4q^{19}+\cdots
4032.2.a.d 4032.a 1.a 11 32.19632.196 Q\Q None 56.2.a.b 00 00 4-4 11 ++ - - SU(2)\mathrm{SU}(2) q4q5+q7+2q17+2q198q23+q-4q^{5}+q^{7}+2q^{17}+2q^{19}-8q^{23}+\cdots
4032.2.a.e 4032.a 1.a 11 32.19632.196 Q\Q None 42.2.a.a 00 00 2-2 1-1 ++ - ++ SU(2)\mathrm{SU}(2) q2q5q74q116q132q17+q-2q^{5}-q^{7}-4q^{11}-6q^{13}-2q^{17}+\cdots
4032.2.a.f 4032.a 1.a 11 32.19632.196 Q\Q None 672.2.a.b 00 00 2-2 1-1 - - ++ SU(2)\mathrm{SU}(2) q2q5q74q11+6q13+2q17+q-2q^{5}-q^{7}-4q^{11}+6q^{13}+2q^{17}+\cdots
4032.2.a.g 4032.a 1.a 11 32.19632.196 Q\Q None 504.2.a.a 00 00 2-2 1-1 ++ ++ ++ SU(2)\mathrm{SU}(2) q2q5q72q112q13+6q17+q-2q^{5}-q^{7}-2q^{11}-2q^{13}+6q^{17}+\cdots
4032.2.a.h 4032.a 1.a 11 32.19632.196 Q\Q None 21.2.a.a 00 00 2-2 1-1 ++ - ++ SU(2)\mathrm{SU}(2) q2q5q7+4q11+2q13+6q17+q-2q^{5}-q^{7}+4q^{11}+2q^{13}+6q^{17}+\cdots
4032.2.a.i 4032.a 1.a 11 32.19632.196 Q\Q None 504.2.a.d 00 00 2-2 1-1 - ++ ++ SU(2)\mathrm{SU}(2) q2q5q7+6q11+6q132q17+q-2q^{5}-q^{7}+6q^{11}+6q^{13}-2q^{17}+\cdots
4032.2.a.j 4032.a 1.a 11 32.19632.196 Q\Q None 504.2.a.d 00 00 2-2 11 ++ ++ - SU(2)\mathrm{SU}(2) q2q5+q76q11+6q132q17+q-2q^{5}+q^{7}-6q^{11}+6q^{13}-2q^{17}+\cdots
4032.2.a.k 4032.a 1.a 11 32.19632.196 Q\Q None 21.2.a.a 00 00 2-2 11 - - - SU(2)\mathrm{SU}(2) q2q5+q74q11+2q13+6q17+q-2q^{5}+q^{7}-4q^{11}+2q^{13}+6q^{17}+\cdots
4032.2.a.l 4032.a 1.a 11 32.19632.196 Q\Q None 504.2.a.a 00 00 2-2 11 - ++ - SU(2)\mathrm{SU}(2) q2q5+q7+2q112q13+6q17+q-2q^{5}+q^{7}+2q^{11}-2q^{13}+6q^{17}+\cdots
4032.2.a.m 4032.a 1.a 11 32.19632.196 Q\Q None 42.2.a.a 00 00 2-2 11 - - - SU(2)\mathrm{SU}(2) q2q5+q7+4q116q132q17+q-2q^{5}+q^{7}+4q^{11}-6q^{13}-2q^{17}+\cdots
4032.2.a.n 4032.a 1.a 11 32.19632.196 Q\Q None 672.2.a.b 00 00 2-2 11 - - - SU(2)\mathrm{SU}(2) q2q5+q7+4q11+6q13+2q17+q-2q^{5}+q^{7}+4q^{11}+6q^{13}+2q^{17}+\cdots
4032.2.a.o 4032.a 1.a 11 32.19632.196 Q\Q None 2016.2.a.c 00 00 00 1-1 - ++ ++ SU(2)\mathrm{SU}(2) qq74q112q134q17+4q23+q-q^{7}-4q^{11}-2q^{13}-4q^{17}+4q^{23}+\cdots
4032.2.a.p 4032.a 1.a 11 32.19632.196 Q\Q None 224.2.a.a 00 00 00 1-1 - - ++ SU(2)\mathrm{SU}(2) qq74q11+4q13+2q17+6q19+q-q^{7}-4q^{11}+4q^{13}+2q^{17}+6q^{19}+\cdots
4032.2.a.q 4032.a 1.a 11 32.19632.196 Q\Q None 672.2.a.c 00 00 00 1-1 ++ - ++ SU(2)\mathrm{SU}(2) qq72q11+2q134q17+4q19+q-q^{7}-2q^{11}+2q^{13}-4q^{17}+4q^{19}+\cdots
4032.2.a.r 4032.a 1.a 11 32.19632.196 Q\Q None 14.2.a.a 00 00 00 1-1 - - ++ SU(2)\mathrm{SU}(2) qq7+4q136q17+2q195q25+q-q^{7}+4q^{13}-6q^{17}+2q^{19}-5q^{25}+\cdots
4032.2.a.s 4032.a 1.a 11 32.19632.196 Q\Q None 2016.2.a.c 00 00 00 1-1 - ++ ++ SU(2)\mathrm{SU}(2) qq7+4q112q13+4q174q23+q-q^{7}+4q^{11}-2q^{13}+4q^{17}-4q^{23}+\cdots
4032.2.a.t 4032.a 1.a 11 32.19632.196 Q\Q None 84.2.a.b 00 00 00 1-1 - - ++ SU(2)\mathrm{SU}(2) qq7+6q112q134q196q23+q-q^{7}+6q^{11}-2q^{13}-4q^{19}-6q^{23}+\cdots
4032.2.a.u 4032.a 1.a 11 32.19632.196 Q\Q None 84.2.a.b 00 00 00 11 ++ - - SU(2)\mathrm{SU}(2) q+q76q112q13+4q19+6q23+q+q^{7}-6q^{11}-2q^{13}+4q^{19}+6q^{23}+\cdots
4032.2.a.v 4032.a 1.a 11 32.19632.196 Q\Q None 2016.2.a.c 00 00 00 11 - ++ - SU(2)\mathrm{SU}(2) q+q74q112q13+4q17+4q23+q+q^{7}-4q^{11}-2q^{13}+4q^{17}+4q^{23}+\cdots
4032.2.a.w 4032.a 1.a 11 32.19632.196 Q\Q None 14.2.a.a 00 00 00 11 ++ - - SU(2)\mathrm{SU}(2) q+q7+4q136q172q195q25+q+q^{7}+4q^{13}-6q^{17}-2q^{19}-5q^{25}+\cdots
4032.2.a.x 4032.a 1.a 11 32.19632.196 Q\Q None 672.2.a.c 00 00 00 11 ++ - - SU(2)\mathrm{SU}(2) q+q7+2q11+2q134q174q19+q+q^{7}+2q^{11}+2q^{13}-4q^{17}-4q^{19}+\cdots
4032.2.a.y 4032.a 1.a 11 32.19632.196 Q\Q None 2016.2.a.c 00 00 00 11 - ++ - SU(2)\mathrm{SU}(2) q+q7+4q112q134q174q23+q+q^{7}+4q^{11}-2q^{13}-4q^{17}-4q^{23}+\cdots
4032.2.a.z 4032.a 1.a 11 32.19632.196 Q\Q None 224.2.a.a 00 00 00 11 - - - SU(2)\mathrm{SU}(2) q+q7+4q11+4q13+2q176q19+q+q^{7}+4q^{11}+4q^{13}+2q^{17}-6q^{19}+\cdots
4032.2.a.ba 4032.a 1.a 11 32.19632.196 Q\Q None 504.2.a.d 00 00 22 1-1 - ++ ++ SU(2)\mathrm{SU}(2) q+2q5q76q11+6q13+2q17+q+2q^{5}-q^{7}-6q^{11}+6q^{13}+2q^{17}+\cdots
4032.2.a.bb 4032.a 1.a 11 32.19632.196 Q\Q None 56.2.a.a 00 00 22 1-1 ++ - ++ SU(2)\mathrm{SU}(2) q+2q5q74q112q13+6q17+q+2q^{5}-q^{7}-4q^{11}-2q^{13}+6q^{17}+\cdots
4032.2.a.bc 4032.a 1.a 11 32.19632.196 Q\Q None 168.2.a.a 00 00 22 1-1 - - ++ SU(2)\mathrm{SU}(2) q+2q5q76q13+2q17+4q19+q+2q^{5}-q^{7}-6q^{13}+2q^{17}+4q^{19}+\cdots
4032.2.a.bd 4032.a 1.a 11 32.19632.196 Q\Q None 672.2.a.d 00 00 22 1-1 - - ++ SU(2)\mathrm{SU}(2) q+2q5q72q132q174q19+q+2q^{5}-q^{7}-2q^{13}-2q^{17}-4q^{19}+\cdots
4032.2.a.be 4032.a 1.a 11 32.19632.196 Q\Q None 168.2.a.b 00 00 22 1-1 ++ - ++ SU(2)\mathrm{SU}(2) q+2q5q7+2q136q17+4q19+q+2q^{5}-q^{7}+2q^{13}-6q^{17}+4q^{19}+\cdots
4032.2.a.bf 4032.a 1.a 11 32.19632.196 Q\Q None 504.2.a.a 00 00 22 1-1 ++ ++ ++ SU(2)\mathrm{SU}(2) q+2q5q7+2q112q136q17+q+2q^{5}-q^{7}+2q^{11}-2q^{13}-6q^{17}+\cdots
4032.2.a.bg 4032.a 1.a 11 32.19632.196 Q\Q None 504.2.a.a 00 00 22 11 - ++ - SU(2)\mathrm{SU}(2) q+2q5+q72q112q136q17+q+2q^{5}+q^{7}-2q^{11}-2q^{13}-6q^{17}+\cdots
4032.2.a.bh 4032.a 1.a 11 32.19632.196 Q\Q None 168.2.a.a 00 00 22 11 ++ - - SU(2)\mathrm{SU}(2) q+2q5+q76q13+2q174q19+q+2q^{5}+q^{7}-6q^{13}+2q^{17}-4q^{19}+\cdots
4032.2.a.bi 4032.a 1.a 11 32.19632.196 Q\Q None 672.2.a.d 00 00 22 11 - - - SU(2)\mathrm{SU}(2) q+2q5+q72q132q17+4q19+q+2q^{5}+q^{7}-2q^{13}-2q^{17}+4q^{19}+\cdots
4032.2.a.bj 4032.a 1.a 11 32.19632.196 Q\Q None 168.2.a.b 00 00 22 11 - - - SU(2)\mathrm{SU}(2) q+2q5+q7+2q136q174q19+q+2q^{5}+q^{7}+2q^{13}-6q^{17}-4q^{19}+\cdots
4032.2.a.bk 4032.a 1.a 11 32.19632.196 Q\Q None 56.2.a.a 00 00 22 11 - - - SU(2)\mathrm{SU}(2) q+2q5+q7+4q112q13+6q17+q+2q^{5}+q^{7}+4q^{11}-2q^{13}+6q^{17}+\cdots
4032.2.a.bl 4032.a 1.a 11 32.19632.196 Q\Q None 504.2.a.d 00 00 22 11 ++ ++ - SU(2)\mathrm{SU}(2) q+2q5+q7+6q11+6q13+2q17+q+2q^{5}+q^{7}+6q^{11}+6q^{13}+2q^{17}+\cdots
4032.2.a.bm 4032.a 1.a 11 32.19632.196 Q\Q None 84.2.a.a 00 00 44 1-1 ++ - ++ SU(2)\mathrm{SU}(2) q+4q5q7+2q11+6q13+4q17+q+4q^{5}-q^{7}+2q^{11}+6q^{13}+4q^{17}+\cdots
4032.2.a.bn 4032.a 1.a 11 32.19632.196 Q\Q None 84.2.a.a 00 00 44 11 - - - SU(2)\mathrm{SU}(2) q+4q5+q72q11+6q13+4q17+q+4q^{5}+q^{7}-2q^{11}+6q^{13}+4q^{17}+\cdots
4032.2.a.bo 4032.a 1.a 22 32.19632.196 Q(5)\Q(\sqrt{5}) None 2016.2.a.p 00 00 2-2 2-2 ++ ++ ++ SU(2)\mathrm{SU}(2) q+(1β)q5q7+(1+β)q112βq13+q+(-1-\beta )q^{5}-q^{7}+(1+\beta )q^{11}-2\beta q^{13}+\cdots
4032.2.a.bp 4032.a 1.a 22 32.19632.196 Q(5)\Q(\sqrt{5}) None 2016.2.a.p 00 00 2-2 22 ++ ++ - SU(2)\mathrm{SU}(2) q+(1β)q5+q7+(1β)q11+q+(-1-\beta )q^{5}+q^{7}+(-1-\beta )q^{11}+\cdots
4032.2.a.bq 4032.a 1.a 22 32.19632.196 Q(3)\Q(\sqrt{3}) None 63.2.a.b 00 00 00 2-2 - ++ ++ SU(2)\mathrm{SU}(2) q+βq5q7+βq112q13+βq17+q+\beta q^{5}-q^{7}+\beta q^{11}-2q^{13}+\beta q^{17}+\cdots
4032.2.a.br 4032.a 1.a 22 32.19632.196 Q(3)\Q(\sqrt{3}) None 672.2.a.i 00 00 00 2-2 - - ++ SU(2)\mathrm{SU}(2) q+βq5q7+(2β)q112q13+q+\beta q^{5}-q^{7}+(2-\beta )q^{11}-2q^{13}+\cdots
4032.2.a.bs 4032.a 1.a 22 32.19632.196 Q(3)\Q(\sqrt{3}) None 672.2.a.i 00 00 00 22 - - - SU(2)\mathrm{SU}(2) q+βq5+q7+(2+β)q112q13+q+\beta q^{5}+q^{7}+(-2+\beta )q^{11}-2q^{13}+\cdots
4032.2.a.bt 4032.a 1.a 22 32.19632.196 Q(3)\Q(\sqrt{3}) None 63.2.a.b 00 00 00 22 ++ ++ - SU(2)\mathrm{SU}(2) q+βq5+q7βq112q13+βq17+q+\beta q^{5}+q^{7}-\beta q^{11}-2q^{13}+\beta q^{17}+\cdots
4032.2.a.bu 4032.a 1.a 22 32.19632.196 Q(5)\Q(\sqrt{5}) None 2016.2.a.p 00 00 22 2-2 ++ ++ ++ SU(2)\mathrm{SU}(2) q+(1+β)q5q7+(1β)q112βq13+q+(1+\beta )q^{5}-q^{7}+(-1-\beta )q^{11}-2\beta q^{13}+\cdots
4032.2.a.bv 4032.a 1.a 22 32.19632.196 Q(5)\Q(\sqrt{5}) None 224.2.a.c 00 00 22 2-2 ++ - ++ SU(2)\mathrm{SU}(2) q+(1+β)q5q7+(2+2β)q11+(3+)q13+q+(1+\beta )q^{5}-q^{7}+(2+2\beta )q^{11}+(-3+\cdots)q^{13}+\cdots
4032.2.a.bw 4032.a 1.a 22 32.19632.196 Q(5)\Q(\sqrt{5}) None 224.2.a.c 00 00 22 22 ++ - - SU(2)\mathrm{SU}(2) q+(1+β)q5+q7+(22β)q11+q+(1+\beta )q^{5}+q^{7}+(-2-2\beta )q^{11}+\cdots
4032.2.a.bx 4032.a 1.a 22 32.19632.196 Q(5)\Q(\sqrt{5}) None 2016.2.a.p 00 00 22 22 ++ ++ - SU(2)\mathrm{SU}(2) q+(1+β)q5+q7+(1+β)q112βq13+q+(1+\beta )q^{5}+q^{7}+(1+\beta )q^{11}-2\beta q^{13}+\cdots

Decomposition of S2old(Γ0(4032))S_{2}^{\mathrm{old}}(\Gamma_0(4032)) into lower level spaces

S2old(Γ0(4032)) S_{2}^{\mathrm{old}}(\Gamma_0(4032)) \simeq S2new(Γ0(14))S_{2}^{\mathrm{new}}(\Gamma_0(14))18^{\oplus 18}\oplusS2new(Γ0(21))S_{2}^{\mathrm{new}}(\Gamma_0(21))14^{\oplus 14}\oplusS2new(Γ0(24))S_{2}^{\mathrm{new}}(\Gamma_0(24))16^{\oplus 16}\oplusS2new(Γ0(32))S_{2}^{\mathrm{new}}(\Gamma_0(32))12^{\oplus 12}\oplusS2new(Γ0(36))S_{2}^{\mathrm{new}}(\Gamma_0(36))10^{\oplus 10}\oplusS2new(Γ0(42))S_{2}^{\mathrm{new}}(\Gamma_0(42))12^{\oplus 12}\oplusS2new(Γ0(48))S_{2}^{\mathrm{new}}(\Gamma_0(48))12^{\oplus 12}\oplusS2new(Γ0(56))S_{2}^{\mathrm{new}}(\Gamma_0(56))12^{\oplus 12}\oplusS2new(Γ0(63))S_{2}^{\mathrm{new}}(\Gamma_0(63))7^{\oplus 7}\oplusS2new(Γ0(64))S_{2}^{\mathrm{new}}(\Gamma_0(64))6^{\oplus 6}\oplusS2new(Γ0(72))S_{2}^{\mathrm{new}}(\Gamma_0(72))8^{\oplus 8}\oplusS2new(Γ0(84))S_{2}^{\mathrm{new}}(\Gamma_0(84))10^{\oplus 10}\oplusS2new(Γ0(96))S_{2}^{\mathrm{new}}(\Gamma_0(96))8^{\oplus 8}\oplusS2new(Γ0(112))S_{2}^{\mathrm{new}}(\Gamma_0(112))9^{\oplus 9}\oplusS2new(Γ0(126))S_{2}^{\mathrm{new}}(\Gamma_0(126))6^{\oplus 6}\oplusS2new(Γ0(144))S_{2}^{\mathrm{new}}(\Gamma_0(144))6^{\oplus 6}\oplusS2new(Γ0(168))S_{2}^{\mathrm{new}}(\Gamma_0(168))8^{\oplus 8}\oplusS2new(Γ0(192))S_{2}^{\mathrm{new}}(\Gamma_0(192))4^{\oplus 4}\oplusS2new(Γ0(224))S_{2}^{\mathrm{new}}(\Gamma_0(224))6^{\oplus 6}\oplusS2new(Γ0(252))S_{2}^{\mathrm{new}}(\Gamma_0(252))5^{\oplus 5}\oplusS2new(Γ0(288))S_{2}^{\mathrm{new}}(\Gamma_0(288))4^{\oplus 4}\oplusS2new(Γ0(336))S_{2}^{\mathrm{new}}(\Gamma_0(336))6^{\oplus 6}\oplusS2new(Γ0(448))S_{2}^{\mathrm{new}}(\Gamma_0(448))3^{\oplus 3}\oplusS2new(Γ0(504))S_{2}^{\mathrm{new}}(\Gamma_0(504))4^{\oplus 4}\oplusS2new(Γ0(576))S_{2}^{\mathrm{new}}(\Gamma_0(576))2^{\oplus 2}\oplusS2new(Γ0(672))S_{2}^{\mathrm{new}}(\Gamma_0(672))4^{\oplus 4}\oplusS2new(Γ0(1008))S_{2}^{\mathrm{new}}(\Gamma_0(1008))3^{\oplus 3}\oplusS2new(Γ0(1344))S_{2}^{\mathrm{new}}(\Gamma_0(1344))2^{\oplus 2}\oplusS2new(Γ0(2016))S_{2}^{\mathrm{new}}(\Gamma_0(2016))2^{\oplus 2}