Properties

Label 4032.2.da
Level 40324032
Weight 22
Character orbit 4032.da
Rep. character χ4032(673,)\chi_{4032}(673,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 288288
Sturm bound 15361536

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4032=26327 4032 = 2^{6} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4032.da (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 72 72
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 15361536

Dimensions

The following table gives the dimensions of various subspaces of M2(4032,[χ])M_{2}(4032, [\chi]).

Total New Old
Modular forms 1584 288 1296
Cusp forms 1488 288 1200
Eisenstein series 96 0 96

Decomposition of S2new(4032,[χ])S_{2}^{\mathrm{new}}(4032, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(4032,[χ])S_{2}^{\mathrm{old}}(4032, [\chi]) into lower level spaces

S2old(4032,[χ]) S_{2}^{\mathrm{old}}(4032, [\chi]) \simeq S2new(72,[χ])S_{2}^{\mathrm{new}}(72, [\chi])8^{\oplus 8}\oplusS2new(288,[χ])S_{2}^{\mathrm{new}}(288, [\chi])4^{\oplus 4}\oplusS2new(504,[χ])S_{2}^{\mathrm{new}}(504, [\chi])4^{\oplus 4}\oplusS2new(576,[χ])S_{2}^{\mathrm{new}}(576, [\chi])2^{\oplus 2}\oplusS2new(2016,[χ])S_{2}^{\mathrm{new}}(2016, [\chi])2^{\oplus 2}