Properties

Label 4032.2.du
Level 40324032
Weight 22
Character orbit 4032.du
Rep. character χ4032(239,)\chi_{4032}(239,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 576576
Sturm bound 15361536

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4032=26327 4032 = 2^{6} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4032.du (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 144 144
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 15361536

Dimensions

The following table gives the dimensions of various subspaces of M2(4032,[χ])M_{2}(4032, [\chi]).

Total New Old
Modular forms 3136 576 2560
Cusp forms 3008 576 2432
Eisenstein series 128 0 128

Decomposition of S2new(4032,[χ])S_{2}^{\mathrm{new}}(4032, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(4032,[χ])S_{2}^{\mathrm{old}}(4032, [\chi]) into lower level spaces

S2old(4032,[χ]) S_{2}^{\mathrm{old}}(4032, [\chi]) \simeq S2new(144,[χ])S_{2}^{\mathrm{new}}(144, [\chi])6^{\oplus 6}\oplusS2new(576,[χ])S_{2}^{\mathrm{new}}(576, [\chi])2^{\oplus 2}\oplusS2new(1008,[χ])S_{2}^{\mathrm{new}}(1008, [\chi])3^{\oplus 3}