Properties

Label 4056.2.a
Level 40564056
Weight 22
Character orbit 4056.a
Rep. character χ4056(1,)\chi_{4056}(1,\cdot)
Character field Q\Q
Dimension 7777
Newform subspaces 3535
Sturm bound 14561456
Trace bound 1111

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4056=233132 4056 = 2^{3} \cdot 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4056.a (trivial)
Character field: Q\Q
Newform subspaces: 35 35
Sturm bound: 14561456
Trace bound: 1111
Distinguishing TpT_p: 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(4056))M_{2}(\Gamma_0(4056)).

Total New Old
Modular forms 784 77 707
Cusp forms 673 77 596
Eisenstein series 111 0 111

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22331313FrickeDim
++++++++1010
++++--99
++-++-1111
++--++99
-++++-1313
-++-++66
--++++77
----1212
Plus space++3232
Minus space-4545

Trace form

77q+q3+2q5+4q7+77q94q11+2q152q178q19+4q2116q23+75q25+q276q294q314q338q35+14q37+14q41+4q99+O(q100) 77 q + q^{3} + 2 q^{5} + 4 q^{7} + 77 q^{9} - 4 q^{11} + 2 q^{15} - 2 q^{17} - 8 q^{19} + 4 q^{21} - 16 q^{23} + 75 q^{25} + q^{27} - 6 q^{29} - 4 q^{31} - 4 q^{33} - 8 q^{35} + 14 q^{37} + 14 q^{41}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(4056))S_{2}^{\mathrm{new}}(\Gamma_0(4056)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 13
4056.2.a.a 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.a.c 00 1-1 4-4 00 ++ ++ ++ SU(2)\mathrm{SU}(2) qq34q5+q9+2q11+4q15+q-q^{3}-4q^{5}+q^{9}+2q^{11}+4q^{15}+\cdots
4056.2.a.b 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.q.c 00 1-1 3-3 44 - ++ ++ SU(2)\mathrm{SU}(2) qq33q5+4q7+q94q11+q-q^{3}-3q^{5}+4q^{7}+q^{9}-4q^{11}+\cdots
4056.2.a.c 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.q.b 00 1-1 2-2 11 ++ ++ ++ SU(2)\mathrm{SU}(2) qq32q5+q7+q96q11+2q15+q-q^{3}-2q^{5}+q^{7}+q^{9}-6q^{11}+2q^{15}+\cdots
4056.2.a.d 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.c.a 00 1-1 00 2-2 ++ ++ - SU(2)\mathrm{SU}(2) qq32q7+q92q112q17+q-q^{3}-2q^{7}+q^{9}-2q^{11}-2q^{17}+\cdots
4056.2.a.e 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.c.a 00 1-1 00 22 - ++ - SU(2)\mathrm{SU}(2) qq3+2q7+q9+2q112q17+q-q^{3}+2q^{7}+q^{9}+2q^{11}-2q^{17}+\cdots
4056.2.a.f 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.a.b 00 1-1 00 44 - ++ ++ SU(2)\mathrm{SU}(2) qq3+4q7+q9+2q116q17+q-q^{3}+4q^{7}+q^{9}+2q^{11}-6q^{17}+\cdots
4056.2.a.g 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.a.a 00 1-1 22 4-4 - ++ ++ SU(2)\mathrm{SU}(2) qq3+2q54q7+q92q15+q-q^{3}+2q^{5}-4q^{7}+q^{9}-2q^{15}+\cdots
4056.2.a.h 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.q.b 00 1-1 22 1-1 - ++ ++ SU(2)\mathrm{SU}(2) qq3+2q5q7+q9+6q112q15+q-q^{3}+2q^{5}-q^{7}+q^{9}+6q^{11}-2q^{15}+\cdots
4056.2.a.i 4056.a 1.a 11 32.38732.387 Q\Q None 24.2.a.a 00 1-1 22 00 ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+2q5+q94q112q15+q-q^{3}+2q^{5}+q^{9}-4q^{11}-2q^{15}+\cdots
4056.2.a.j 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.q.c 00 1-1 33 4-4 ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+3q54q7+q9+4q11+q-q^{3}+3q^{5}-4q^{7}+q^{9}+4q^{11}+\cdots
4056.2.a.k 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.c.c 00 11 4-4 2-2 ++ - - SU(2)\mathrm{SU}(2) q+q34q52q7+q9+2q11+q+q^{3}-4q^{5}-2q^{7}+q^{9}+2q^{11}+\cdots
4056.2.a.l 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.q.a 00 11 3-3 00 - - ++ SU(2)\mathrm{SU}(2) q+q33q5+q93q15q17+q+q^{3}-3q^{5}+q^{9}-3q^{15}-q^{17}+\cdots
4056.2.a.m 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.a.f 00 11 2-2 00 ++ - ++ SU(2)\mathrm{SU}(2) q+q32q5+q92q15+2q17+q+q^{3}-2q^{5}+q^{9}-2q^{15}+2q^{17}+\cdots
4056.2.a.n 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.c.b 00 11 2-2 22 - - - SU(2)\mathrm{SU}(2) q+q32q5+2q7+q9+4q11+q+q^{3}-2q^{5}+2q^{7}+q^{9}+4q^{11}+\cdots
4056.2.a.o 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.a.e 00 11 00 00 - - ++ SU(2)\mathrm{SU}(2) q+q3+q96q11+2q17+4q23+q+q^{3}+q^{9}-6q^{11}+2q^{17}+4q^{23}+\cdots
4056.2.a.p 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.c.b 00 11 22 2-2 ++ - - SU(2)\mathrm{SU}(2) q+q3+2q52q7+q94q11+q+q^{3}+2q^{5}-2q^{7}+q^{9}-4q^{11}+\cdots
4056.2.a.q 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.q.a 00 11 33 00 ++ - ++ SU(2)\mathrm{SU}(2) q+q3+3q5+q9+3q15q17+q+q^{3}+3q^{5}+q^{9}+3q^{15}-q^{17}+\cdots
4056.2.a.r 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.c.c 00 11 44 22 - - - SU(2)\mathrm{SU}(2) q+q3+4q5+2q7+q92q11+q+q^{3}+4q^{5}+2q^{7}+q^{9}-2q^{11}+\cdots
4056.2.a.s 4056.a 1.a 11 32.38732.387 Q\Q None 312.2.a.d 00 11 44 44 ++ - ++ SU(2)\mathrm{SU}(2) q+q3+4q5+4q7+q9+2q11+q+q^{3}+4q^{5}+4q^{7}+q^{9}+2q^{11}+\cdots
4056.2.a.t 4056.a 1.a 22 32.38732.387 Q(3)\Q(\sqrt{3}) None 312.2.bf.a 00 2-2 00 2-2 - ++ - SU(2)\mathrm{SU}(2) qq3+βq5+(1+β)q7+q9+(1+)q11+q-q^{3}+\beta q^{5}+(-1+\beta )q^{7}+q^{9}+(-1+\cdots)q^{11}+\cdots
4056.2.a.u 4056.a 1.a 22 32.38732.387 Q(3)\Q(\sqrt{3}) None 312.2.bf.a 00 2-2 00 22 ++ ++ - SU(2)\mathrm{SU}(2) qq3+βq5+(1+β)q7+q9+(1+β)q11+q-q^{3}+\beta q^{5}+(1+\beta )q^{7}+q^{9}+(1+\beta )q^{11}+\cdots
4056.2.a.v 4056.a 1.a 22 32.38732.387 Q(13)\Q(\sqrt{13}) None 312.2.q.d 00 22 2-2 22 - - ++ SU(2)\mathrm{SU}(2) q+q3q5+(1β)q7+q9+(1+)q11+q+q^{3}-q^{5}+(1-\beta )q^{7}+q^{9}+(-1+\cdots)q^{11}+\cdots
4056.2.a.w 4056.a 1.a 22 32.38732.387 Q(13)\Q(\sqrt{13}) None 312.2.q.d 00 22 22 2-2 ++ - ++ SU(2)\mathrm{SU}(2) q+q3+q5+(1β)q7+q9+(1+)q11+q+q^{3}+q^{5}+(-1-\beta )q^{7}+q^{9}+(1+\cdots)q^{11}+\cdots
4056.2.a.x 4056.a 1.a 33 32.38732.387 Q(ζ14)+\Q(\zeta_{14})^+ None 4056.2.a.x 00 3-3 2-2 00 - ++ - SU(2)\mathrm{SU}(2) qq3+(1β2)q5+(1+2β1+)q7+q-q^{3}+(-1-\beta _{2})q^{5}+(-1+2\beta _{1}+\cdots)q^{7}+\cdots
4056.2.a.y 4056.a 1.a 33 32.38732.387 3.3.837.1 None 312.2.q.e 00 3-3 00 3-3 ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+β2q5+(1+β1)q7+q9+q-q^{3}+\beta _{2}q^{5}+(-1+\beta _{1})q^{7}+q^{9}+\cdots
4056.2.a.z 4056.a 1.a 33 32.38732.387 3.3.837.1 None 312.2.q.e 00 3-3 00 33 - ++ ++ SU(2)\mathrm{SU}(2) qq3β2q5+(1β1)q7+q9+(β1+)q11+q-q^{3}-\beta _{2}q^{5}+(1-\beta _{1})q^{7}+q^{9}+(-\beta _{1}+\cdots)q^{11}+\cdots
4056.2.a.ba 4056.a 1.a 33 32.38732.387 Q(ζ14)+\Q(\zeta_{14})^+ None 4056.2.a.x 00 3-3 22 00 ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+(1β1)q5+(1+β12β2)q7+q-q^{3}+(1-\beta _{1})q^{5}+(-1+\beta _{1}-2\beta _{2})q^{7}+\cdots
4056.2.a.bb 4056.a 1.a 33 32.38732.387 Q(ζ14)+\Q(\zeta_{14})^+ None 4056.2.a.bb 00 33 00 00 ++ - - SU(2)\mathrm{SU}(2) q+q3+(12β1+β2)q5+(1+2β1+)q7+q+q^{3}+(1-2\beta _{1}+\beta _{2})q^{5}+(-1+2\beta _{1}+\cdots)q^{7}+\cdots
4056.2.a.bc 4056.a 1.a 33 32.38732.387 Q(ζ14)+\Q(\zeta_{14})^+ None 4056.2.a.bb 00 33 00 00 - - ++ SU(2)\mathrm{SU}(2) q+q3+(β1β2)q5+(β1+β2)q7+q+q^{3}+(-\beta _{1}-\beta _{2})q^{5}+(\beta _{1}+\beta _{2})q^{7}+\cdots
4056.2.a.bd 4056.a 1.a 44 32.38732.387 4.4.25488.1 None 312.2.bf.b 00 44 4-4 2-2 ++ - - SU(2)\mathrm{SU}(2) q+q3+(1+β1β2)q5+(1β1+)q7+q+q^{3}+(-1+\beta _{1}-\beta _{2})q^{5}+(-1-\beta _{1}+\cdots)q^{7}+\cdots
4056.2.a.be 4056.a 1.a 44 32.38732.387 4.4.25488.1 None 312.2.bf.b 00 44 44 22 - - - SU(2)\mathrm{SU}(2) q+q3+(1β1+β2)q5+(1+β1β2+)q7+q+q^{3}+(1-\beta _{1}+\beta _{2})q^{5}+(1+\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots
4056.2.a.bf 4056.a 1.a 66 32.38732.387 6.6.27700337.1 None 4056.2.a.bf 00 6-6 1-1 7-7 - ++ ++ SU(2)\mathrm{SU}(2) qq3β5q5+(1β1)q7+q9+q-q^{3}-\beta _{5}q^{5}+(-1-\beta _{1})q^{7}+q^{9}+\cdots
4056.2.a.bg 4056.a 1.a 66 32.38732.387 6.6.27700337.1 None 4056.2.a.bf 00 6-6 11 77 ++ ++ - SU(2)\mathrm{SU}(2) qq3+β5q5+(1+β1)q7+q9+(1+)q11+q-q^{3}+\beta _{5}q^{5}+(1+\beta _{1})q^{7}+q^{9}+(1+\cdots)q^{11}+\cdots
4056.2.a.bh 4056.a 1.a 66 32.38732.387 6.6.27700337.1 None 4056.2.a.bh 00 66 1-1 55 ++ - ++ SU(2)\mathrm{SU}(2) q+q3+(β1β3)q5+(1β2β4+)q7+q+q^{3}+(\beta _{1}-\beta _{3})q^{5}+(1-\beta _{2}-\beta _{4}+\cdots)q^{7}+\cdots
4056.2.a.bi 4056.a 1.a 66 32.38732.387 6.6.27700337.1 None 4056.2.a.bh 00 66 11 5-5 - - - SU(2)\mathrm{SU}(2) q+q3+(β1+β3)q5+(1+β2+)q7+q+q^{3}+(-\beta _{1}+\beta _{3})q^{5}+(-1+\beta _{2}+\cdots)q^{7}+\cdots

Decomposition of S2old(Γ0(4056))S_{2}^{\mathrm{old}}(\Gamma_0(4056)) into lower level spaces

S2old(Γ0(4056)) S_{2}^{\mathrm{old}}(\Gamma_0(4056)) \simeq S2new(Γ0(24))S_{2}^{\mathrm{new}}(\Gamma_0(24))3^{\oplus 3}\oplusS2new(Γ0(26))S_{2}^{\mathrm{new}}(\Gamma_0(26))12^{\oplus 12}\oplusS2new(Γ0(39))S_{2}^{\mathrm{new}}(\Gamma_0(39))8^{\oplus 8}\oplusS2new(Γ0(52))S_{2}^{\mathrm{new}}(\Gamma_0(52))8^{\oplus 8}\oplusS2new(Γ0(78))S_{2}^{\mathrm{new}}(\Gamma_0(78))6^{\oplus 6}\oplusS2new(Γ0(104))S_{2}^{\mathrm{new}}(\Gamma_0(104))4^{\oplus 4}\oplusS2new(Γ0(156))S_{2}^{\mathrm{new}}(\Gamma_0(156))4^{\oplus 4}\oplusS2new(Γ0(169))S_{2}^{\mathrm{new}}(\Gamma_0(169))8^{\oplus 8}\oplusS2new(Γ0(312))S_{2}^{\mathrm{new}}(\Gamma_0(312))2^{\oplus 2}\oplusS2new(Γ0(338))S_{2}^{\mathrm{new}}(\Gamma_0(338))6^{\oplus 6}\oplusS2new(Γ0(507))S_{2}^{\mathrm{new}}(\Gamma_0(507))4^{\oplus 4}\oplusS2new(Γ0(676))S_{2}^{\mathrm{new}}(\Gamma_0(676))4^{\oplus 4}\oplusS2new(Γ0(1014))S_{2}^{\mathrm{new}}(\Gamma_0(1014))3^{\oplus 3}\oplusS2new(Γ0(1352))S_{2}^{\mathrm{new}}(\Gamma_0(1352))2^{\oplus 2}\oplusS2new(Γ0(2028))S_{2}^{\mathrm{new}}(\Gamma_0(2028))2^{\oplus 2}