Defining parameters
Level: | \( N \) | \(=\) | \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4056.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 35 \) | ||
Sturm bound: | \(1456\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4056))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 784 | 77 | 707 |
Cusp forms | 673 | 77 | 596 |
Eisenstein series | 111 | 0 | 111 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(10\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(9\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(11\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(9\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(13\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(6\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(7\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(12\) |
Plus space | \(+\) | \(32\) | ||
Minus space | \(-\) | \(45\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4056))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4056))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4056)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(507))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(676))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1014))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1352))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2028))\)\(^{\oplus 2}\)