Properties

Label 4080.2.m
Level $4080$
Weight $2$
Character orbit 4080.m
Rep. character $\chi_{4080}(2449,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $21$
Sturm bound $1728$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(1728\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(7\), \(11\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4080, [\chi])\).

Total New Old
Modular forms 888 96 792
Cusp forms 840 96 744
Eisenstein series 48 0 48

Trace form

\( 96 q - 96 q^{9} - 8 q^{25} - 24 q^{31} + 24 q^{35} + 16 q^{39} + 16 q^{41} - 96 q^{49} + 12 q^{51} - 28 q^{55} - 16 q^{75} + 88 q^{79} + 96 q^{81} - 16 q^{89} - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(4080, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4080.2.m.a 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 255.2.b.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(-i-2)q^{5}+4 i q^{7}-q^{9}+\cdots\)
4080.2.m.b 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 1020.2.g.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(i-2)q^{5}-q^{9}+(-2 i-1)q^{15}+\cdots\)
4080.2.m.c 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 2040.2.m.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(i-2)q^{5}+4 i q^{7}-q^{9}+\cdots\)
4080.2.m.d 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 510.2.d.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(i-2)q^{5}+4 i q^{7}-q^{9}+\cdots\)
4080.2.m.e 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 2040.2.m.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(-i-2)q^{5}+2 i q^{7}-q^{9}+\cdots\)
4080.2.m.f 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 2040.2.m.d \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(2 i-1)q^{5}+3 i q^{7}-q^{9}+\cdots\)
4080.2.m.g 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 2040.2.m.c \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(2 i-1)q^{5}+i q^{7}-q^{9}+\cdots\)
4080.2.m.h 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 1020.2.g.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(-2 i+1)q^{5}+3 i q^{7}+\cdots\)
4080.2.m.i 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 2040.2.m.e \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(2 i+1)q^{5}+5 i q^{7}-q^{9}+\cdots\)
4080.2.m.j 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 1020.2.g.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(-2 i+1)q^{5}+i q^{7}-q^{9}+\cdots\)
4080.2.m.k 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 2040.2.m.g \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(-i+2)q^{5}+4 i q^{7}-q^{9}+\cdots\)
4080.2.m.l 4080.m 5.b $2$ $32.579$ \(\Q(\sqrt{-1}) \) None 2040.2.m.f \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+(i+2)q^{5}-q^{9}-2 q^{11}+\cdots\)
4080.2.m.m 4080.m 5.b $4$ $32.579$ \(\Q(i, \sqrt{5})\) None 510.2.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}-\beta _{2}q^{5}+(-\beta _{1}+\beta _{2})q^{7}+\cdots\)
4080.2.m.n 4080.m 5.b $4$ $32.579$ \(\Q(i, \sqrt{5})\) None 255.2.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+\beta _{1}q^{7}-q^{9}+3q^{11}+\cdots\)
4080.2.m.o 4080.m 5.b $4$ $32.579$ \(\Q(i, \sqrt{6})\) None 510.2.d.c \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+(1+\beta _{2}+\beta _{3})q^{5}+(\beta _{1}+\beta _{3})q^{7}+\cdots\)
4080.2.m.p 4080.m 5.b $6$ $32.579$ 6.0.5161984.1 None 510.2.d.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+\beta _{5}q^{5}+(\beta _{1}+\beta _{2}+2\beta _{3}+\cdots)q^{7}+\cdots\)
4080.2.m.q 4080.m 5.b $10$ $32.579$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 2040.2.m.h \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{3}+\beta _{8}q^{5}+(\beta _{4}+\beta _{5})q^{7}-q^{9}+\cdots\)
4080.2.m.r 4080.m 5.b $10$ $32.579$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1020.2.g.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}-\beta _{7}q^{5}+\beta _{9}q^{7}-q^{9}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
4080.2.m.s 4080.m 5.b $10$ $32.579$ 10.0.\(\cdots\).1 None 255.2.b.c \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}-\beta _{3}q^{5}+(-\beta _{5}+\beta _{6}+\beta _{7}+\cdots)q^{7}+\cdots\)
4080.2.m.t 4080.m 5.b $12$ $32.579$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2040.2.m.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{3}+\beta _{8}q^{5}-\beta _{7}q^{7}-q^{9}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
4080.2.m.u 4080.m 5.b $12$ $32.579$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 2040.2.m.j \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{3}-\beta _{3}q^{5}+(-\beta _{6}+\beta _{7}-\beta _{8}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(4080, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4080, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(680, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1020, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2040, [\chi])\)\(^{\oplus 2}\)