Properties

Label 414.2.e
Level $414$
Weight $2$
Character orbit 414.e
Rep. character $\chi_{414}(139,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $44$
Newform subspaces $5$
Sturm bound $144$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 414.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(144\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(414, [\chi])\).

Total New Old
Modular forms 152 44 108
Cusp forms 136 44 92
Eisenstein series 16 0 16

Trace form

\( 44 q + 2 q^{2} + 2 q^{3} - 22 q^{4} + 2 q^{6} + 4 q^{7} - 4 q^{8} - 14 q^{9} - 10 q^{11} - 4 q^{12} + 4 q^{13} + 20 q^{15} - 22 q^{16} + 28 q^{17} - 4 q^{18} + 4 q^{19} - 16 q^{21} - 6 q^{22} + 2 q^{24}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(414, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
414.2.e.a 414.e 9.c $2$ $3.306$ \(\Q(\sqrt{-3}) \) None 414.2.e.a \(1\) \(3\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
414.2.e.b 414.e 9.c $10$ $3.306$ 10.0.\(\cdots\).1 None 414.2.e.b \(-5\) \(1\) \(-5\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{2}-\beta _{7}q^{3}+(-1+\beta _{3})q^{4}+(-1+\cdots)q^{5}+\cdots\)
414.2.e.c 414.e 9.c $10$ $3.306$ 10.0.\(\cdots\).1 None 414.2.e.c \(-5\) \(1\) \(5\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{4})q^{2}+(1+\beta _{5}-\beta _{6}-\beta _{9})q^{3}+\cdots\)
414.2.e.d 414.e 9.c $10$ $3.306$ 10.0.\(\cdots\).1 None 414.2.e.d \(5\) \(-3\) \(-1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{7})q^{2}+\beta _{1}q^{3}+\beta _{7}q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\)
414.2.e.e 414.e 9.c $12$ $3.306$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 414.2.e.e \(6\) \(0\) \(5\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}-\beta _{1}q^{3}+(-1+\beta _{2})q^{4}+(1+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(414, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(414, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)