Defining parameters
Level: | \( N \) | \(=\) | \( 414 = 2 \cdot 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 414.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(414, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 44 | 108 |
Cusp forms | 136 | 44 | 92 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(414, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
414.2.e.a | $2$ | $3.306$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(3\) | \(-4\) | \(0\) | \(q+(1-\zeta_{6})q^{2}+(1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
414.2.e.b | $10$ | $3.306$ | 10.0.\(\cdots\).1 | None | \(-5\) | \(1\) | \(-5\) | \(-3\) | \(q-\beta _{3}q^{2}-\beta _{7}q^{3}+(-1+\beta _{3})q^{4}+(-1+\cdots)q^{5}+\cdots\) |
414.2.e.c | $10$ | $3.306$ | 10.0.\(\cdots\).1 | None | \(-5\) | \(1\) | \(5\) | \(5\) | \(q+(-1-\beta _{4})q^{2}+(1+\beta _{5}-\beta _{6}-\beta _{9})q^{3}+\cdots\) |
414.2.e.d | $10$ | $3.306$ | 10.0.\(\cdots\).1 | None | \(5\) | \(-3\) | \(-1\) | \(5\) | \(q+(1+\beta _{7})q^{2}+\beta _{1}q^{3}+\beta _{7}q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\) |
414.2.e.e | $12$ | $3.306$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(6\) | \(0\) | \(5\) | \(-3\) | \(q+\beta _{2}q^{2}-\beta _{1}q^{3}+(-1+\beta _{2})q^{4}+(1+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(414, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(414, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)