Properties

Label 416.4
Level 416
Weight 4
Dimension 8854
Nonzero newspaces 20
Sturm bound 43008
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 20 \)
Sturm bound: \(43008\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(416))\).

Total New Old
Modular forms 16512 9074 7438
Cusp forms 15744 8854 6890
Eisenstein series 768 220 548

Trace form

\( 8854 q - 40 q^{2} - 28 q^{3} - 40 q^{4} - 44 q^{5} - 40 q^{6} - 60 q^{7} - 40 q^{8} - 154 q^{9} - 280 q^{10} - 28 q^{11} + 56 q^{12} + 74 q^{13} + 328 q^{14} + 188 q^{15} + 560 q^{16} + 340 q^{17} + 320 q^{18}+ \cdots + 26748 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(416))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
416.4.a \(\chi_{416}(1, \cdot)\) 416.4.a.a 1 1
416.4.a.b 1
416.4.a.c 1
416.4.a.d 1
416.4.a.e 3
416.4.a.f 3
416.4.a.g 4
416.4.a.h 5
416.4.a.i 5
416.4.a.j 6
416.4.a.k 6
416.4.b \(\chi_{416}(209, \cdot)\) 416.4.b.a 2 1
416.4.b.b 34
416.4.e \(\chi_{416}(337, \cdot)\) 416.4.e.a 40 1
416.4.f \(\chi_{416}(129, \cdot)\) 416.4.f.a 2 1
416.4.f.b 4
416.4.f.c 16
416.4.f.d 20
416.4.i \(\chi_{416}(289, \cdot)\) 416.4.i.a 4 2
416.4.i.b 4
416.4.i.c 4
416.4.i.d 8
416.4.i.e 8
416.4.i.f 12
416.4.i.g 22
416.4.i.h 22
416.4.k \(\chi_{416}(31, \cdot)\) 416.4.k.a 20 2
416.4.k.b 20
416.4.k.c 22
416.4.k.d 22
416.4.l \(\chi_{416}(343, \cdot)\) None 0 2
416.4.n \(\chi_{416}(105, \cdot)\) None 0 2
416.4.p \(\chi_{416}(25, \cdot)\) None 0 2
416.4.s \(\chi_{416}(135, \cdot)\) None 0 2
416.4.u \(\chi_{416}(47, \cdot)\) 416.4.u.a 80 2
416.4.w \(\chi_{416}(225, \cdot)\) 416.4.w.a 4 2
416.4.w.b 40
416.4.w.c 40
416.4.z \(\chi_{416}(81, \cdot)\) 416.4.z.a 80 2
416.4.ba \(\chi_{416}(17, \cdot)\) 416.4.ba.a 80 2
416.4.bd \(\chi_{416}(83, \cdot)\) n/a 664 4
416.4.bf \(\chi_{416}(53, \cdot)\) n/a 576 4
416.4.bg \(\chi_{416}(77, \cdot)\) n/a 664 4
416.4.bi \(\chi_{416}(99, \cdot)\) n/a 664 4
416.4.bk \(\chi_{416}(15, \cdot)\) n/a 160 4
416.4.bn \(\chi_{416}(7, \cdot)\) None 0 4
416.4.bp \(\chi_{416}(121, \cdot)\) None 0 4
416.4.br \(\chi_{416}(9, \cdot)\) None 0 4
416.4.bs \(\chi_{416}(71, \cdot)\) None 0 4
416.4.bu \(\chi_{416}(63, \cdot)\) n/a 168 4
416.4.bx \(\chi_{416}(115, \cdot)\) n/a 1328 8
416.4.bz \(\chi_{416}(69, \cdot)\) n/a 1328 8
416.4.ca \(\chi_{416}(29, \cdot)\) n/a 1328 8
416.4.cc \(\chi_{416}(11, \cdot)\) n/a 1328 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(416))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(416)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(416))\)\(^{\oplus 1}\)