Defining parameters
Level: | \( N \) | \(=\) | \( 4160 = 2^{6} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4160.cm (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1344\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4160, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1392 | 224 | 1168 |
Cusp forms | 1296 | 224 | 1072 |
Eisenstein series | 96 | 0 | 96 |
Decomposition of \(S_{2}^{\mathrm{new}}(4160, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4160, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4160, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2080, [\chi])\)\(^{\oplus 2}\)