Properties

Label 42.3.c
Level $42$
Weight $3$
Character orbit 42.c
Rep. character $\chi_{42}(13,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 42.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(42, [\chi])\).

Total New Old
Modular forms 20 4 16
Cusp forms 12 4 8
Eisenstein series 8 0 8

Trace form

\( 4 q + 8 q^{4} + 8 q^{7} - 12 q^{9} + O(q^{10}) \) \( 4 q + 8 q^{4} + 8 q^{7} - 12 q^{9} - 24 q^{11} - 24 q^{14} - 24 q^{15} + 16 q^{16} + 12 q^{21} - 24 q^{22} + 24 q^{23} + 28 q^{25} + 16 q^{28} + 120 q^{29} + 24 q^{30} - 24 q^{35} - 24 q^{36} - 80 q^{37} + 96 q^{39} + 48 q^{42} - 128 q^{43} - 48 q^{44} - 72 q^{46} - 20 q^{49} + 96 q^{50} - 24 q^{51} - 216 q^{53} - 48 q^{56} - 24 q^{57} - 48 q^{60} - 24 q^{63} + 32 q^{64} + 240 q^{65} + 176 q^{67} + 72 q^{70} - 120 q^{71} + 288 q^{74} + 24 q^{77} - 48 q^{78} + 128 q^{79} + 36 q^{81} + 24 q^{84} + 216 q^{85} - 240 q^{86} - 48 q^{88} + 48 q^{92} - 144 q^{93} - 240 q^{95} - 192 q^{98} + 72 q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(42, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
42.3.c.a 42.c 7.b $4$ $1.144$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 42.3.c.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{2}q^{3}+2q^{4}+(-2\beta _{2}-\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(42, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(42, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)