Properties

Label 42.3.g
Level 4242
Weight 33
Character orbit 42.g
Rep. character χ42(19,)\chi_{42}(19,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 44
Newform subspaces 11
Sturm bound 2424
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 42=237 42 = 2 \cdot 3 \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 42.g (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 2424
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M3(42,[χ])M_{3}(42, [\chi]).

Total New Old
Modular forms 40 4 36
Cusp forms 24 4 20
Eisenstein series 16 0 16

Trace form

4q+6q34q4+12q510q7+6q924q1012q1112q12+24q14+24q158q1648q1742q19+24q23+22q25+96q26+40q2824q30+72q99+O(q100) 4 q + 6 q^{3} - 4 q^{4} + 12 q^{5} - 10 q^{7} + 6 q^{9} - 24 q^{10} - 12 q^{11} - 12 q^{12} + 24 q^{14} + 24 q^{15} - 8 q^{16} - 48 q^{17} - 42 q^{19} + 24 q^{23} + 22 q^{25} + 96 q^{26} + 40 q^{28} - 24 q^{30}+ \cdots - 72 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(42,[χ])S_{3}^{\mathrm{new}}(42, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
42.3.g.a 42.g 7.d 44 1.1441.144 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) None 42.3.g.a 00 66 1212 10-10 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+β1q2+(2+β2)q3+2β2q4+(2+)q5+q+\beta _{1}q^{2}+(2+\beta _{2})q^{3}+2\beta _{2}q^{4}+(2+\cdots)q^{5}+\cdots

Decomposition of S3old(42,[χ])S_{3}^{\mathrm{old}}(42, [\chi]) into lower level spaces

S3old(42,[χ]) S_{3}^{\mathrm{old}}(42, [\chi]) \simeq S3new(14,[χ])S_{3}^{\mathrm{new}}(14, [\chi])2^{\oplus 2}\oplusS3new(21,[χ])S_{3}^{\mathrm{new}}(21, [\chi])2^{\oplus 2}