Defining parameters
Level: | \( N \) | \(=\) | \( 42 = 2 \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 42.g (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(42, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 4 | 36 |
Cusp forms | 24 | 4 | 20 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(42, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
42.3.g.a | $4$ | $1.144$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | None | \(0\) | \(6\) | \(12\) | \(-10\) | \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{3}+2\beta _{2}q^{4}+(2+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(42, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(42, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)