Properties

Label 42.4.e
Level $42$
Weight $4$
Character orbit 42.e
Rep. character $\chi_{42}(25,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $3$
Sturm bound $32$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 42.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(32\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(42, [\chi])\).

Total New Old
Modular forms 56 8 48
Cusp forms 40 8 32
Eisenstein series 16 0 16

Trace form

\( 8 q - 6 q^{3} - 16 q^{4} + 16 q^{5} + 24 q^{6} + 28 q^{7} - 36 q^{9} - 52 q^{10} - 28 q^{11} - 24 q^{12} + 12 q^{13} - 32 q^{14} + 84 q^{15} - 64 q^{16} + 260 q^{17} - 50 q^{19} - 128 q^{20} - 36 q^{21}+ \cdots + 504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(42, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
42.4.e.a 42.e 7.c $2$ $2.478$ \(\Q(\sqrt{-3}) \) None 42.4.e.a \(2\) \(-3\) \(6\) \(-7\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{2}-3\zeta_{6}q^{3}-4\zeta_{6}q^{4}+\cdots\)
42.4.e.b 42.e 7.c $2$ $2.478$ \(\Q(\sqrt{-3}) \) None 42.4.e.b \(2\) \(3\) \(15\) \(35\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{2}+3\zeta_{6}q^{3}-4\zeta_{6}q^{4}+\cdots\)
42.4.e.c 42.e 7.c $4$ $2.478$ \(\Q(\sqrt{-3}, \sqrt{1345})\) None 42.4.e.c \(-4\) \(-6\) \(-5\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-2\beta _{2}q^{2}+(-3+3\beta _{2})q^{3}+(-4+4\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(42, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(42, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)