Properties

Label 42.4.e
Level 4242
Weight 44
Character orbit 42.e
Rep. character χ42(25,)\chi_{42}(25,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 88
Newform subspaces 33
Sturm bound 3232
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 42=237 42 = 2 \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 42.e (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 3 3
Sturm bound: 3232
Trace bound: 33
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(42,[χ])M_{4}(42, [\chi]).

Total New Old
Modular forms 56 8 48
Cusp forms 40 8 32
Eisenstein series 16 0 16

Trace form

8q6q316q4+16q5+24q6+28q736q952q1028q1124q12+12q1332q14+84q1564q16+260q1750q19128q2036q21++504q99+O(q100) 8 q - 6 q^{3} - 16 q^{4} + 16 q^{5} + 24 q^{6} + 28 q^{7} - 36 q^{9} - 52 q^{10} - 28 q^{11} - 24 q^{12} + 12 q^{13} - 32 q^{14} + 84 q^{15} - 64 q^{16} + 260 q^{17} - 50 q^{19} - 128 q^{20} - 36 q^{21}+ \cdots + 504 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(42,[χ])S_{4}^{\mathrm{new}}(42, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
42.4.e.a 42.e 7.c 22 2.4782.478 Q(3)\Q(\sqrt{-3}) None 42.4.e.a 22 3-3 66 7-7 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(22ζ6)q23ζ6q34ζ6q4+q+(2-2\zeta_{6})q^{2}-3\zeta_{6}q^{3}-4\zeta_{6}q^{4}+\cdots
42.4.e.b 42.e 7.c 22 2.4782.478 Q(3)\Q(\sqrt{-3}) None 42.4.e.b 22 33 1515 3535 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(22ζ6)q2+3ζ6q34ζ6q4+q+(2-2\zeta_{6})q^{2}+3\zeta_{6}q^{3}-4\zeta_{6}q^{4}+\cdots
42.4.e.c 42.e 7.c 44 2.4782.478 Q(3,1345)\Q(\sqrt{-3}, \sqrt{1345}) None 42.4.e.c 4-4 6-6 5-5 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q2β2q2+(3+3β2)q3+(4+4β2+)q4+q-2\beta _{2}q^{2}+(-3+3\beta _{2})q^{3}+(-4+4\beta _{2}+\cdots)q^{4}+\cdots

Decomposition of S4old(42,[χ])S_{4}^{\mathrm{old}}(42, [\chi]) into lower level spaces

S4old(42,[χ]) S_{4}^{\mathrm{old}}(42, [\chi]) \simeq S4new(7,[χ])S_{4}^{\mathrm{new}}(7, [\chi])4^{\oplus 4}\oplusS4new(14,[χ])S_{4}^{\mathrm{new}}(14, [\chi])2^{\oplus 2}\oplusS4new(21,[χ])S_{4}^{\mathrm{new}}(21, [\chi])2^{\oplus 2}