Defining parameters
Level: | \( N \) | \(=\) | \( 42 = 2 \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 42.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(42, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 8 | 48 |
Cusp forms | 40 | 8 | 32 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(42, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
42.4.e.a | $2$ | $2.478$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(-3\) | \(6\) | \(-7\) | \(q+(2-2\zeta_{6})q^{2}-3\zeta_{6}q^{3}-4\zeta_{6}q^{4}+\cdots\) |
42.4.e.b | $2$ | $2.478$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(3\) | \(15\) | \(35\) | \(q+(2-2\zeta_{6})q^{2}+3\zeta_{6}q^{3}-4\zeta_{6}q^{4}+\cdots\) |
42.4.e.c | $4$ | $2.478$ | \(\Q(\sqrt{-3}, \sqrt{1345})\) | None | \(-4\) | \(-6\) | \(-5\) | \(0\) | \(q-2\beta _{2}q^{2}+(-3+3\beta _{2})q^{3}+(-4+4\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(42, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(42, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)