Properties

Label 420.2.d
Level $420$
Weight $2$
Character orbit 420.d
Rep. character $\chi_{420}(41,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $4$
Sturm bound $192$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(192\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(11\), \(17\), \(41\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(420, [\chi])\).

Total New Old
Modular forms 108 12 96
Cusp forms 84 12 72
Eisenstein series 24 0 24

Trace form

\( 12 q - 4 q^{7} + 6 q^{9} + 2 q^{15} + 2 q^{21} + 12 q^{25} - 32 q^{37} - 30 q^{39} + 4 q^{49} + 22 q^{51} - 12 q^{57} + 32 q^{63} + 32 q^{67} - 4 q^{79} - 10 q^{81} - 12 q^{85} + 4 q^{91} - 20 q^{93} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(420, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
420.2.d.a 420.d 21.c $2$ $3.354$ \(\Q(\sqrt{-3}) \) None 420.2.d.a \(0\) \(-3\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\zeta_{6})q^{3}-q^{5}+(1+2\zeta_{6})q^{7}+\cdots\)
420.2.d.b 420.d 21.c $2$ $3.354$ \(\Q(\sqrt{-3}) \) None 420.2.d.a \(0\) \(3\) \(2\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\zeta_{6})q^{3}+q^{5}+(3-2\zeta_{6})q^{7}+3\zeta_{6}q^{9}+\cdots\)
420.2.d.c 420.d 21.c $4$ $3.354$ \(\Q(i, \sqrt{5})\) None 420.2.d.c \(0\) \(-2\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta _{3})q^{3}+q^{5}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
420.2.d.d 420.d 21.c $4$ $3.354$ \(\Q(i, \sqrt{5})\) None 420.2.d.c \(0\) \(2\) \(-4\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{1})q^{3}-q^{5}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(420, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(420, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 2}\)