Defining parameters
Level: | \( N \) | \(=\) | \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 420.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(11\), \(17\), \(41\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(420, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 108 | 12 | 96 |
Cusp forms | 84 | 12 | 72 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(420, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
420.2.d.a | $2$ | $3.354$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-3\) | \(-2\) | \(4\) | \(q+(-1-\zeta_{6})q^{3}-q^{5}+(1+2\zeta_{6})q^{7}+\cdots\) |
420.2.d.b | $2$ | $3.354$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(2\) | \(4\) | \(q+(1+\zeta_{6})q^{3}+q^{5}+(3-2\zeta_{6})q^{7}+3\zeta_{6}q^{9}+\cdots\) |
420.2.d.c | $4$ | $3.354$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(-2\) | \(4\) | \(-6\) | \(q+(-1+\beta _{3})q^{3}+q^{5}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\) |
420.2.d.d | $4$ | $3.354$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(2\) | \(-4\) | \(-6\) | \(q+(1+\beta _{1})q^{3}-q^{5}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(420, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(420, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 2}\)