Properties

Label 4212.2.de
Level $4212$
Weight $2$
Character orbit 4212.de
Rep. character $\chi_{4212}(829,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $252$
Sturm bound $1512$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.de (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 351 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(1512\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4212, [\chi])\).

Total New Old
Modular forms 4644 252 4392
Cusp forms 4428 252 4176
Eisenstein series 216 0 216

Decomposition of \(S_{2}^{\mathrm{new}}(4212, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(4212, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4212, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(351, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(702, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1053, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1404, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2106, [\chi])\)\(^{\oplus 2}\)