Properties

Label 4212.2.de
Level 42124212
Weight 22
Character orbit 4212.de
Rep. character χ4212(829,)\chi_{4212}(829,\cdot)
Character field Q(ζ18)\Q(\zeta_{18})
Dimension 252252
Sturm bound 15121512

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4212=223413 4212 = 2^{2} \cdot 3^{4} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4212.de (of order 1818 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 351 351
Character field: Q(ζ18)\Q(\zeta_{18})
Sturm bound: 15121512

Dimensions

The following table gives the dimensions of various subspaces of M2(4212,[χ])M_{2}(4212, [\chi]).

Total New Old
Modular forms 4644 252 4392
Cusp forms 4428 252 4176
Eisenstein series 216 0 216

Decomposition of S2new(4212,[χ])S_{2}^{\mathrm{new}}(4212, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(4212,[χ])S_{2}^{\mathrm{old}}(4212, [\chi]) into lower level spaces

S2old(4212,[χ]) S_{2}^{\mathrm{old}}(4212, [\chi]) \simeq S2new(351,[χ])S_{2}^{\mathrm{new}}(351, [\chi])6^{\oplus 6}\oplusS2new(702,[χ])S_{2}^{\mathrm{new}}(702, [\chi])4^{\oplus 4}\oplusS2new(1053,[χ])S_{2}^{\mathrm{new}}(1053, [\chi])3^{\oplus 3}\oplusS2new(1404,[χ])S_{2}^{\mathrm{new}}(1404, [\chi])2^{\oplus 2}\oplusS2new(2106,[χ])S_{2}^{\mathrm{new}}(2106, [\chi])2^{\oplus 2}