Defining parameters
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(425))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 50 | 26 | 24 |
Cusp forms | 39 | 26 | 13 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(17\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(-\) | \(9\) |
\(-\) | \(+\) | \(-\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(5\) |
Plus space | \(+\) | \(8\) | |
Minus space | \(-\) | \(18\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(425))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(425))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(425)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 2}\)