Defining parameters
Level: | \( N \) | \(=\) | \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4275.bk (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(1200\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4275, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1224 | 648 | 576 |
Cusp forms | 1176 | 648 | 528 |
Eisenstein series | 48 | 0 | 48 |
Decomposition of \(S_{2}^{\mathrm{new}}(4275, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4275, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4275, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(855, [\chi])\)\(^{\oplus 2}\)