Defining parameters
Level: | \( N \) | \(=\) | \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4275.ff (of order \(36\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 285 \) |
Character field: | \(\Q(\zeta_{36})\) | ||
Sturm bound: | \(1200\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4275, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7488 | 1440 | 6048 |
Cusp forms | 6912 | 1440 | 5472 |
Eisenstein series | 576 | 0 | 576 |
Decomposition of \(S_{2}^{\mathrm{new}}(4275, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4275, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4275, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(855, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1425, [\chi])\)\(^{\oplus 2}\)